Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from peft import PeftModel | |
| from huggingface_hub import login | |
| # Login using HF token from secrets | |
| hf_token = os.environ.get("HF_TOKEN") | |
| if not hf_token: | |
| raise RuntimeError("Missing HF_TOKEN in secrets.") | |
| login(token=hf_token) | |
| # Base and LoRA model paths | |
| base_model_id = "unsloth/gemma-2-9b-bnb-4bit" | |
| lora_model_id = "Futuresony/future_12_10_2024" | |
| # Load tokenizer and base model | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_id) | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_id, | |
| torch_dtype=torch.float16, | |
| device_map="auto" | |
| ) | |
| # Load LoRA weights | |
| model = PeftModel.from_pretrained(base_model, lora_model_id) | |
| model.eval() | |
| # Chat function | |
| def generate_response(message, history, system_message, max_tokens, temperature, top_p): | |
| prompt = system_message + "\n\n" | |
| for user_input, bot_response in history: | |
| prompt += f"User: {user_input}\nAssistant: {bot_response}\n" | |
| prompt += f"User: {message}\nAssistant:" | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| final_response = response.split("Assistant:")[-1].strip() | |
| return final_response | |
| # Gradio interface | |
| demo = gr.ChatInterface( | |
| fn=generate_response, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System Message"), | |
| gr.Slider(50, 1024, value=256, step=1, label="Max Tokens"), | |
| gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p"), | |
| ], | |
| title="LoRA Chat Assistant (Gemma-2)", | |
| description="Chat with your fine-tuned Gemma-2 LoRA model" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |