Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,29 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
-
from peft import PeftModel
|
| 4 |
-
import torch
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
base_model_id = "unsloth/gemma-2-9b"
|
| 8 |
-
lora_model_id = "
|
| 9 |
-
from huggingface_hub import InferenceClient
|
| 10 |
-
import os
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
def format_alpaca_prompt(user_input, system_prompt, history):
|
| 19 |
-
"""Formats input in Alpaca/LLaMA style"""
|
| 20 |
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history])
|
| 21 |
prompt = f"""{system_prompt}
|
| 22 |
{history_str}
|
|
@@ -24,84 +31,44 @@ def format_alpaca_prompt(user_input, system_prompt, history):
|
|
| 24 |
### Instruction:
|
| 25 |
{user_input}
|
| 26 |
|
| 27 |
-
### Response:
|
| 28 |
-
"""
|
| 29 |
return prompt
|
| 30 |
|
|
|
|
| 31 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
if __name__ == "__main__":
|
| 59 |
-
demo.launch()"
|
| 60 |
-
|
| 61 |
-
# Load the base model on CPU
|
| 62 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 63 |
-
base_model_id,
|
| 64 |
-
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
| 65 |
-
device_map="cpu"
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
# Load the PEFT LoRA model
|
| 69 |
-
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
| 70 |
-
|
| 71 |
-
# Load tokenizer
|
| 72 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 73 |
-
|
| 74 |
-
# Chat function
|
| 75 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
| 76 |
-
messages = [{"role": "system", "content": system_message}]
|
| 77 |
-
for user_msg, bot_msg in history:
|
| 78 |
-
if user_msg:
|
| 79 |
-
messages.append({"role": "user", "content": user_msg})
|
| 80 |
-
if bot_msg:
|
| 81 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
| 82 |
-
messages.append({"role": "user", "content": message})
|
| 83 |
-
|
| 84 |
-
# Generate response (simulated loop for streaming output)
|
| 85 |
-
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cpu")
|
| 86 |
-
outputs = model.generate(
|
| 87 |
-
inputs,
|
| 88 |
-
max_new_tokens=max_tokens,
|
| 89 |
-
temperature=temperature,
|
| 90 |
-
top_p=top_p,
|
| 91 |
-
do_sample=True,
|
| 92 |
-
)
|
| 93 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 94 |
-
yield response
|
| 95 |
-
|
| 96 |
-
# Gradio UI
|
| 97 |
demo = gr.ChatInterface(
|
| 98 |
fn=respond,
|
| 99 |
additional_inputs=[
|
| 100 |
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
|
| 101 |
-
gr.Slider(minimum=1, maximum=
|
| 102 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 103 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.
|
| 104 |
],
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
from peft import PeftModel, PeftConfig
|
|
|
|
| 6 |
|
| 7 |
+
# Set the HF repo and LoRA model location
|
| 8 |
+
base_model_id = "unsloth/gemma-2-9b"
|
| 9 |
+
lora_model_id = "Futuresony/gemma2-9b-lora-alpaca"
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Load base model on CPU
|
| 12 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
base_model_id,
|
| 14 |
+
device_map="cpu",
|
| 15 |
+
torch_dtype=torch.float32,
|
| 16 |
+
)
|
| 17 |
|
| 18 |
+
# Load tokenizer from base model
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
| 20 |
|
| 21 |
+
# Load LoRA adapter
|
| 22 |
+
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
| 23 |
+
model.eval()
|
| 24 |
+
|
| 25 |
+
# === Alpaca-style formatter ===
|
| 26 |
def format_alpaca_prompt(user_input, system_prompt, history):
|
|
|
|
| 27 |
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history])
|
| 28 |
prompt = f"""{system_prompt}
|
| 29 |
{history_str}
|
|
|
|
| 31 |
### Instruction:
|
| 32 |
{user_input}
|
| 33 |
|
| 34 |
+
### Response:"""
|
|
|
|
| 35 |
return prompt
|
| 36 |
|
| 37 |
+
# === Chat logic ===
|
| 38 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 39 |
+
prompt = format_alpaca_prompt(message, system_message, history)
|
| 40 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model.generate(
|
| 44 |
+
**inputs,
|
| 45 |
+
max_new_tokens=max_tokens,
|
| 46 |
+
temperature=temperature,
|
| 47 |
+
top_p=top_p,
|
| 48 |
+
do_sample=True,
|
| 49 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 53 |
+
# Only return the part after "### Response:"
|
| 54 |
+
if "### Response:" in response_text:
|
| 55 |
+
final_output = response_text.split("### Response:")[-1].strip()
|
| 56 |
+
else:
|
| 57 |
+
final_output = response_text.strip()
|
| 58 |
+
|
| 59 |
+
history.append((message, final_output))
|
| 60 |
+
yield final_output
|
| 61 |
+
|
| 62 |
+
# === Gradio Interface ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
demo = gr.ChatInterface(
|
| 64 |
fn=respond,
|
| 65 |
additional_inputs=[
|
| 66 |
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
|
| 67 |
+
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens"),
|
| 68 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 69 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.01, label="Top-p"),
|
| 70 |
],
|
| 71 |
+
title="Offline Gemma-2B Alpaca Chatbot (LoRA)",
|
| 72 |
)
|
| 73 |
|
| 74 |
if __name__ == "__main__":
|