Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,58 @@ import torch
|
|
| 5 |
|
| 6 |
# Use a CPU-compatible base model (replace this with your actual full-precision model)
|
| 7 |
base_model_id = "unsloth/gemma-2b" # Replace with real CPU-compatible model
|
| 8 |
-
lora_model_id = "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Load the base model on CPU
|
| 11 |
base_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 5 |
|
| 6 |
# Use a CPU-compatible base model (replace this with your actual full-precision model)
|
| 7 |
base_model_id = "unsloth/gemma-2b" # Replace with real CPU-compatible model
|
| 8 |
+
lora_model_id = "import gradio as gr
|
| 9 |
+
from huggingface_hub import InferenceClient
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# 🔹 Hugging Face Credentials
|
| 13 |
+
HF_REPO = "Futuresony/gemma2-9b-lora-alpaca"
|
| 14 |
+
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
| 15 |
+
|
| 16 |
+
client = InferenceClient(HF_REPO, token=HF_TOKEN)
|
| 17 |
+
|
| 18 |
+
def format_alpaca_prompt(user_input, system_prompt, history):
|
| 19 |
+
"""Formats input in Alpaca/LLaMA style"""
|
| 20 |
+
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history])
|
| 21 |
+
prompt = f"""{system_prompt}
|
| 22 |
+
{history_str}
|
| 23 |
+
|
| 24 |
+
### Instruction:
|
| 25 |
+
{user_input}
|
| 26 |
+
|
| 27 |
+
### Response:
|
| 28 |
+
"""
|
| 29 |
+
return prompt
|
| 30 |
+
|
| 31 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 32 |
+
formatted_prompt = format_alpaca_prompt(message, system_message, history)
|
| 33 |
+
|
| 34 |
+
response = client.text_generation(
|
| 35 |
+
formatted_prompt,
|
| 36 |
+
max_new_tokens=max_tokens,
|
| 37 |
+
temperature=temperature,
|
| 38 |
+
top_p=top_p,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# ✅ Extract only the response
|
| 42 |
+
cleaned_response = response.split("### Response:")[-1].strip()
|
| 43 |
+
|
| 44 |
+
history.append((message, cleaned_response)) # ✅ Update history with the new message and response
|
| 45 |
+
|
| 46 |
+
yield cleaned_response # ✅ Output only the answer
|
| 47 |
+
|
| 48 |
+
demo = gr.ChatInterface(
|
| 49 |
+
respond,
|
| 50 |
+
additional_inputs=[
|
| 51 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 52 |
+
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"),
|
| 53 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"),
|
| 54 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"),
|
| 55 |
+
],
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
if __name__ == "__main__":
|
| 59 |
+
demo.launch()"
|
| 60 |
|
| 61 |
# Load the base model on CPU
|
| 62 |
base_model = AutoModelForCausalLM.from_pretrained(
|