Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
| from huggingface_hub import InferenceClient | |
| from ttsmms import download, TTS | |
| from langdetect import detect | |
| # Load ASR Model | |
| asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025" | |
| processor = Wav2Vec2Processor.from_pretrained(asr_model_name) | |
| asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name) | |
| # Load Text Generation Model | |
| client = InferenceClient("unsloth/gemma-3-1b-it") | |
| def format_prompt(user_input): | |
| return f"{user_input}" | |
| # Load TTS Models | |
| swahili_dir = download("swh", "./data/swahili") | |
| english_dir = download("eng", "./data/english") | |
| swahili_tts = TTS(swahili_dir) | |
| english_tts = TTS(english_dir) | |
| # ASR Function | |
| def transcribe(audio_file): | |
| speech_array, sample_rate = torchaudio.load(audio_file) | |
| resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
| speech_array = resampler(speech_array).squeeze().numpy() | |
| input_values = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_values | |
| with torch.no_grad(): | |
| logits = asr_model(input_values).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| transcription = processor.batch_decode(predicted_ids)[0] | |
| return transcription | |
| # Text Generation Function | |
| def generate_text(prompt): | |
| formatted_prompt = format_prompt(prompt) | |
| response = client.text_generation(formatted_prompt, max_new_tokens=250, temperature=0.7, top_p=0.95) | |
| return response.strip() | |
| # TTS Function | |
| def text_to_speech(text): | |
| lang = detect(text) | |
| wav_path = "./output.wav" | |
| if lang == "sw": | |
| swahili_tts.synthesis(text, wav_path=wav_path) | |
| else: | |
| english_tts.synthesis(text, wav_path=wav_path) | |
| return wav_path | |
| # Combined Processing Function | |
| def process_audio(audio): | |
| transcription = transcribe(audio) | |
| generated_text = generate_text(transcription) | |
| speech = text_to_speech(generated_text) | |
| return transcription, generated_text, speech | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR, Text Generation, and TTS</p>") | |
| gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>") | |
| audio_input = gr.Audio(label="Input Audio", type="filepath") | |
| text_output = gr.Textbox(label="Transcription") | |
| generated_text_output = gr.Textbox(label="Generated Text") | |
| audio_output = gr.Audio(label="Output Speech") | |
| submit_btn = gr.Button("Submit") | |
| submit_btn.click( | |
| fn=process_audio, | |
| inputs=audio_input, | |
| outputs=[text_output, generated_text_output, audio_output] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |