Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,31 +2,34 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 5 |
-
# from huggingface_hub import InferenceClient # Removed
|
| 6 |
from ttsmms import download, TTS
|
| 7 |
from langdetect import detect
|
| 8 |
-
from gradio_client import Client
|
| 9 |
|
|
|
|
| 10 |
# Load ASR Model
|
|
|
|
| 11 |
asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025"
|
| 12 |
processor = Wav2Vec2Processor.from_pretrained(asr_model_name)
|
| 13 |
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name)
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
# def format_prompt(user_input): # Removed
|
| 20 |
-
# return f"{user_input}" # Removed
|
| 21 |
|
|
|
|
| 22 |
# Load TTS Models
|
|
|
|
| 23 |
swahili_dir = download("swh", "./data/swahili")
|
| 24 |
english_dir = download("eng", "./data/english")
|
| 25 |
|
| 26 |
swahili_tts = TTS(swahili_dir)
|
| 27 |
english_tts = TTS(english_dir)
|
| 28 |
|
|
|
|
| 29 |
# ASR Function
|
|
|
|
| 30 |
def transcribe(audio_file):
|
| 31 |
speech_array, sample_rate = torchaudio.load(audio_file)
|
| 32 |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
|
@@ -38,39 +41,62 @@ def transcribe(audio_file):
|
|
| 38 |
transcription = processor.batch_decode(predicted_ids)[0]
|
| 39 |
return transcription
|
| 40 |
|
| 41 |
-
#
|
|
|
|
|
|
|
| 42 |
def generate_text(prompt):
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
result
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
| 50 |
# TTS Function
|
|
|
|
| 51 |
def text_to_speech(text):
|
| 52 |
-
print(f"Converting text to speech (type: {type(text)})
|
| 53 |
lang = detect(text)
|
| 54 |
wav_path = "./output.wav"
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
return wav_path
|
| 61 |
|
|
|
|
| 62 |
# Combined Processing Function
|
|
|
|
| 63 |
def process_audio(audio):
|
| 64 |
-
print(f"Processing audio
|
|
|
|
| 65 |
transcription = transcribe(audio)
|
| 66 |
-
print(f"Transcription
|
|
|
|
| 67 |
generated_text = generate_text(transcription)
|
| 68 |
-
print(f"Generated
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
|
|
|
| 73 |
# Gradio Interface
|
|
|
|
| 74 |
with gr.Blocks() as demo:
|
| 75 |
gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR, Text Generation, and TTS</p>")
|
| 76 |
gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>")
|
|
@@ -88,4 +114,4 @@ with gr.Blocks() as demo:
|
|
| 88 |
)
|
| 89 |
|
| 90 |
if __name__ == "__main__":
|
| 91 |
-
demo.launch()
|
|
|
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
|
| 5 |
from ttsmms import download, TTS
|
| 6 |
from langdetect import detect
|
| 7 |
+
from gradio_client import Client
|
| 8 |
|
| 9 |
+
# =========================
|
| 10 |
# Load ASR Model
|
| 11 |
+
# =========================
|
| 12 |
asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025"
|
| 13 |
processor = Wav2Vec2Processor.from_pretrained(asr_model_name)
|
| 14 |
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name)
|
| 15 |
|
| 16 |
+
# =========================
|
| 17 |
+
# Load Text Generation Model via Gradio Client
|
| 18 |
+
# =========================
|
| 19 |
+
llm_client = Client("Futuresony/Mr.Events")
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# =========================
|
| 22 |
# Load TTS Models
|
| 23 |
+
# =========================
|
| 24 |
swahili_dir = download("swh", "./data/swahili")
|
| 25 |
english_dir = download("eng", "./data/english")
|
| 26 |
|
| 27 |
swahili_tts = TTS(swahili_dir)
|
| 28 |
english_tts = TTS(english_dir)
|
| 29 |
|
| 30 |
+
# =========================
|
| 31 |
# ASR Function
|
| 32 |
+
# =========================
|
| 33 |
def transcribe(audio_file):
|
| 34 |
speech_array, sample_rate = torchaudio.load(audio_file)
|
| 35 |
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
|
|
|
| 41 |
transcription = processor.batch_decode(predicted_ids)[0]
|
| 42 |
return transcription
|
| 43 |
|
| 44 |
+
# =========================
|
| 45 |
+
# Text Generation Function (Safe)
|
| 46 |
+
# =========================
|
| 47 |
def generate_text(prompt):
|
| 48 |
+
print(f"[DEBUG] Generating text for prompt: {prompt} (type: {type(prompt)})")
|
| 49 |
+
|
| 50 |
+
result = llm_client.predict(query=prompt, api_name="/chat")
|
| 51 |
+
print(f"[DEBUG] /chat returned: {result} (type: {type(result)})")
|
| 52 |
+
|
| 53 |
+
# Ensure result is always a string
|
| 54 |
+
if not isinstance(result, str):
|
| 55 |
+
try:
|
| 56 |
+
result = " ".join(map(str, result)) if isinstance(result, (list, tuple)) else str(result)
|
| 57 |
+
except Exception as e:
|
| 58 |
+
print(f"[ERROR] Failed to convert result to string: {e}")
|
| 59 |
+
result = "Error: Unable to generate text."
|
| 60 |
+
|
| 61 |
+
return result.strip()
|
| 62 |
|
| 63 |
+
# =========================
|
| 64 |
# TTS Function
|
| 65 |
+
# =========================
|
| 66 |
def text_to_speech(text):
|
| 67 |
+
print(f"[DEBUG] Converting text to speech: {text} (type: {type(text)})")
|
| 68 |
lang = detect(text)
|
| 69 |
wav_path = "./output.wav"
|
| 70 |
+
try:
|
| 71 |
+
if lang == "sw":
|
| 72 |
+
swahili_tts.synthesis(text, wav_path=wav_path)
|
| 73 |
+
else:
|
| 74 |
+
english_tts.synthesis(text, wav_path=wav_path)
|
| 75 |
+
except Exception as e:
|
| 76 |
+
print(f"[ERROR] TTS synthesis failed: {e}")
|
| 77 |
+
return None
|
| 78 |
return wav_path
|
| 79 |
|
| 80 |
+
# =========================
|
| 81 |
# Combined Processing Function
|
| 82 |
+
# =========================
|
| 83 |
def process_audio(audio):
|
| 84 |
+
print(f"[DEBUG] Processing audio: {audio} (type: {type(audio)})")
|
| 85 |
+
|
| 86 |
transcription = transcribe(audio)
|
| 87 |
+
print(f"[DEBUG] Transcription: {transcription}")
|
| 88 |
+
|
| 89 |
generated_text = generate_text(transcription)
|
| 90 |
+
print(f"[DEBUG] Generated Text: {generated_text}")
|
| 91 |
+
|
| 92 |
+
speech_path = text_to_speech(generated_text)
|
| 93 |
+
print(f"[DEBUG] Speech Path: {speech_path}")
|
| 94 |
+
|
| 95 |
+
return transcription, generated_text, speech_path
|
| 96 |
|
| 97 |
+
# =========================
|
| 98 |
# Gradio Interface
|
| 99 |
+
# =========================
|
| 100 |
with gr.Blocks() as demo:
|
| 101 |
gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR, Text Generation, and TTS</p>")
|
| 102 |
gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>")
|
|
|
|
| 114 |
)
|
| 115 |
|
| 116 |
if __name__ == "__main__":
|
| 117 |
+
demo.launch()
|