Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 5 |
+
from huggingface_hub import InferenceClient
|
| 6 |
+
from ttsmms import download, TTS
|
| 7 |
+
from langdetect import detect
|
| 8 |
+
|
| 9 |
+
# Load ASR Model
|
| 10 |
+
asr_model_name = "Futuresony/Future-sw_ASR-24-02-2025"
|
| 11 |
+
processor = Wav2Vec2Processor.from_pretrained(asr_model_name)
|
| 12 |
+
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name)
|
| 13 |
+
|
| 14 |
+
# Load Text Generation Model
|
| 15 |
+
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
|
| 16 |
+
|
| 17 |
+
def format_prompt(user_input):
|
| 18 |
+
return f"{user_input}"
|
| 19 |
+
|
| 20 |
+
# Load TTS Models
|
| 21 |
+
swahili_dir = download("swh", "./data/swahili")
|
| 22 |
+
english_dir = download("eng", "./data/english")
|
| 23 |
+
|
| 24 |
+
swahili_tts = TTS(swahili_dir)
|
| 25 |
+
english_tts = TTS(english_dir)
|
| 26 |
+
|
| 27 |
+
# ASR Function
|
| 28 |
+
def transcribe(audio_file):
|
| 29 |
+
speech_array, sample_rate = torchaudio.load(audio_file)
|
| 30 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
| 31 |
+
speech_array = resampler(speech_array).squeeze().numpy()
|
| 32 |
+
input_values = processor(speech_array, sampling_rate=16000, return_tensors="pt").input_values
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
logits = asr_model(input_values).logits
|
| 35 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 36 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
| 37 |
+
return transcription
|
| 38 |
+
|
| 39 |
+
# Text Generation Function
|
| 40 |
+
def generate_text(prompt):
|
| 41 |
+
formatted_prompt = format_prompt(prompt)
|
| 42 |
+
response = client.text_generation(formatted_prompt, max_new_tokens=250, temperature=0.7, top_p=0.95)
|
| 43 |
+
return response.strip()
|
| 44 |
+
|
| 45 |
+
# TTS Function
|
| 46 |
+
def text_to_speech(text):
|
| 47 |
+
lang = detect(text)
|
| 48 |
+
wav_path = "./output.wav"
|
| 49 |
+
if lang == "sw":
|
| 50 |
+
swahili_tts.synthesis(text, wav_path=wav_path)
|
| 51 |
+
else:
|
| 52 |
+
english_tts.synthesis(text, wav_path=wav_path)
|
| 53 |
+
return wav_path
|
| 54 |
+
|
| 55 |
+
# Combined Processing Function
|
| 56 |
+
def process_audio(audio):
|
| 57 |
+
transcription = transcribe(audio)
|
| 58 |
+
generated_text = generate_text(transcription)
|
| 59 |
+
speech = text_to_speech(generated_text)
|
| 60 |
+
return transcription, generated_text, speech
|
| 61 |
+
|
| 62 |
+
# Gradio Interface
|
| 63 |
+
with gr.Blocks() as demo:
|
| 64 |
+
gr.Markdown("<p align='center' style='font-size: 20px;'>End-to-End ASR, Text Generation, and TTS</p>")
|
| 65 |
+
gr.HTML("<center>Upload or record audio. The model will transcribe, generate a response, and read it out.</center>")
|
| 66 |
+
|
| 67 |
+
audio_input = gr.Audio(label="Input Audio", type="filepath")
|
| 68 |
+
text_output = gr.Textbox(label="Transcription")
|
| 69 |
+
generated_text_output = gr.Textbox(label="Generated Text")
|
| 70 |
+
audio_output = gr.Audio(label="Output Speech")
|
| 71 |
+
submit_btn = gr.Button("Submit")
|
| 72 |
+
|
| 73 |
+
submit_btn.click(
|
| 74 |
+
fn=process_audio,
|
| 75 |
+
inputs=audio_input,
|
| 76 |
+
outputs=[text_output, generated_text_output, audio_output]
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
if __name__ == "__main__":
|
| 80 |
+
demo.launch()
|
| 81 |
+
|