Spaces:
Runtime error
Runtime error
Update asr.py
Browse files
asr.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import librosa
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
| 5 |
|
| 6 |
ASR_SAMPLING_RATE = 16_000
|
|
@@ -11,6 +12,11 @@ processor = AutoProcessor.from_pretrained(MODEL_ID)
|
|
| 11 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 12 |
model.eval()
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def transcribe_auto(audio_data=None):
|
| 15 |
if not audio_data:
|
| 16 |
return "<<ERROR: Empty Audio Input>>"
|
|
@@ -30,20 +36,24 @@ def transcribe_auto(audio_data=None):
|
|
| 30 |
|
| 31 |
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
|
| 32 |
|
| 33 |
-
# **Step 1:
|
| 34 |
with torch.no_grad():
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
# **Step
|
| 39 |
-
processor.tokenizer.set_target_lang(
|
| 40 |
-
model.load_adapter(
|
| 41 |
|
| 42 |
-
# **Step
|
| 43 |
with torch.no_grad():
|
| 44 |
outputs = model(**inputs).logits
|
| 45 |
ids = torch.argmax(outputs, dim=-1)[0]
|
| 46 |
-
|
| 47 |
|
| 48 |
-
return f"Detected Language: {detected_lang}\n\nTranscription:\n{
|
| 49 |
-
|
|
|
|
| 1 |
import librosa
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
+
import langid # Language detection library
|
| 5 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
| 6 |
|
| 7 |
ASR_SAMPLING_RATE = 16_000
|
|
|
|
| 12 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 13 |
model.eval()
|
| 14 |
|
| 15 |
+
def detect_language(text):
|
| 16 |
+
"""Detects language using langid (fast & lightweight)."""
|
| 17 |
+
lang, _ = langid.classify(text)
|
| 18 |
+
return lang if lang in ["en", "sw"] else "en" # Default to English
|
| 19 |
+
|
| 20 |
def transcribe_auto(audio_data=None):
|
| 21 |
if not audio_data:
|
| 22 |
return "<<ERROR: Empty Audio Input>>"
|
|
|
|
| 36 |
|
| 37 |
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
|
| 38 |
|
| 39 |
+
# **Step 1: Transcribe without Language Detection**
|
| 40 |
with torch.no_grad():
|
| 41 |
+
outputs = model(**inputs).logits
|
| 42 |
+
ids = torch.argmax(outputs, dim=-1)[0]
|
| 43 |
+
raw_transcription = processor.decode(ids)
|
| 44 |
+
|
| 45 |
+
# **Step 2: Detect Language from Transcription**
|
| 46 |
+
detected_lang = detect_language(raw_transcription)
|
| 47 |
+
lang_code = "eng" if detected_lang == "en" else "swh"
|
| 48 |
|
| 49 |
+
# **Step 3: Reload Model with Correct Adapter**
|
| 50 |
+
processor.tokenizer.set_target_lang(lang_code)
|
| 51 |
+
model.load_adapter(lang_code)
|
| 52 |
|
| 53 |
+
# **Step 4: Transcribe Again with Correct Adapter**
|
| 54 |
with torch.no_grad():
|
| 55 |
outputs = model(**inputs).logits
|
| 56 |
ids = torch.argmax(outputs, dim=-1)[0]
|
| 57 |
+
final_transcription = processor.decode(ids)
|
| 58 |
|
| 59 |
+
return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}"
|
|
|