Spaces:
Runtime error
Runtime error
Update lid.py
Browse files
lid.py
CHANGED
|
@@ -2,77 +2,78 @@ from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
|
|
| 2 |
import torch
|
| 3 |
import librosa
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
processor = AutoFeatureExtractor.from_pretrained(
|
| 9 |
-
model = Wav2Vec2ForSequenceClassification.from_pretrained(
|
| 10 |
-
|
| 11 |
|
|
|
|
| 12 |
LID_SAMPLING_RATE = 16_000
|
| 13 |
-
|
| 14 |
-
LID_THRESHOLD = 0.33
|
| 15 |
-
|
| 16 |
LID_LANGUAGES = {}
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
for line in f:
|
| 19 |
-
iso, name = line.split(" ", 1)
|
| 20 |
LID_LANGUAGES[iso] = name
|
| 21 |
|
| 22 |
-
|
| 23 |
-
def identify(audio_data
|
| 24 |
if not audio_data:
|
| 25 |
return "<<ERROR: Empty Audio Input>>"
|
| 26 |
-
|
|
|
|
| 27 |
if isinstance(audio_data, tuple):
|
| 28 |
-
# microphone
|
| 29 |
sr, audio_samples = audio_data
|
| 30 |
audio_samples = (audio_samples / 32768.0).astype(np.float32)
|
| 31 |
if sr != LID_SAMPLING_RATE:
|
| 32 |
-
audio_samples = librosa.resample(
|
| 33 |
-
audio_samples, orig_sr=sr, target_sr=LID_SAMPLING_RATE
|
| 34 |
-
)
|
| 35 |
-
else:
|
| 36 |
-
# file upload
|
| 37 |
-
isinstance(audio_data, str)
|
| 38 |
-
audio_samples = librosa.load(audio_data, sr=LID_SAMPLING_RATE, mono=True)[0]
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
-
# set device
|
| 45 |
-
if torch.cuda.is_available():
|
| 46 |
-
device = torch.device("cuda")
|
| 47 |
-
elif (
|
| 48 |
-
hasattr(torch.backends, "mps")
|
| 49 |
-
and torch.backends.mps.is_available()
|
| 50 |
-
and torch.backends.mps.is_built()
|
| 51 |
-
):
|
| 52 |
-
device = torch.device("mps")
|
| 53 |
else:
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
|
|
|
|
|
|
|
| 56 |
model.to(device)
|
| 57 |
inputs = inputs.to(device)
|
| 58 |
|
|
|
|
| 59 |
with torch.no_grad():
|
| 60 |
logit = model(**inputs).logits
|
| 61 |
|
|
|
|
| 62 |
logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1)
|
| 63 |
scores, indices = torch.topk(logit_lsm, 5, dim=-1)
|
| 64 |
-
scores, indices = torch.exp(scores).
|
|
|
|
|
|
|
| 65 |
iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)}
|
|
|
|
|
|
|
| 66 |
if max(iso2score.values()) < LID_THRESHOLD:
|
| 67 |
-
return "Low confidence in
|
| 68 |
-
return {LID_LANGUAGES[iso]: score for iso, score in iso2score.items()}
|
| 69 |
|
|
|
|
| 70 |
|
|
|
|
| 71 |
LID_EXAMPLES = [
|
| 72 |
["upload/english.mp3"],
|
| 73 |
["upload/tamil.mp3"],
|
| 74 |
["upload/burmese.mp3"],
|
| 75 |
]
|
| 76 |
-
demo.launch()
|
| 77 |
-
).launch()
|
| 78 |
-
demo.launch()
|
|
|
|
| 2 |
import torch
|
| 3 |
import librosa
|
| 4 |
import numpy as np
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
+
# Load Facebook MMS Language Identification Model
|
| 8 |
+
MODEL_ID = "facebook/mms-lid-1024"
|
| 9 |
+
processor = AutoFeatureExtractor.from_pretrained(MODEL_ID)
|
| 10 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(MODEL_ID)
|
|
|
|
| 11 |
|
| 12 |
+
# Constants
|
| 13 |
LID_SAMPLING_RATE = 16_000
|
| 14 |
+
LID_THRESHOLD = 0.33 # Confidence threshold
|
|
|
|
|
|
|
| 15 |
LID_LANGUAGES = {}
|
| 16 |
+
|
| 17 |
+
# Load Language Labels
|
| 18 |
+
LANG_FILE = "data/lid/all_langs.tsv"
|
| 19 |
+
if not os.path.exists(LANG_FILE):
|
| 20 |
+
raise FileNotFoundError(f"Language file '{LANG_FILE}' not found!")
|
| 21 |
+
|
| 22 |
+
with open(LANG_FILE, encoding="utf-8") as f:
|
| 23 |
for line in f:
|
| 24 |
+
iso, name = line.strip().split(" ", 1)
|
| 25 |
LID_LANGUAGES[iso] = name
|
| 26 |
|
| 27 |
+
# Identify Audio Language
|
| 28 |
+
def identify(audio_data=None):
|
| 29 |
if not audio_data:
|
| 30 |
return "<<ERROR: Empty Audio Input>>"
|
| 31 |
+
|
| 32 |
+
# Microphone Input
|
| 33 |
if isinstance(audio_data, tuple):
|
|
|
|
| 34 |
sr, audio_samples = audio_data
|
| 35 |
audio_samples = (audio_samples / 32768.0).astype(np.float32)
|
| 36 |
if sr != LID_SAMPLING_RATE:
|
| 37 |
+
audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=LID_SAMPLING_RATE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# File Upload
|
| 40 |
+
elif isinstance(audio_data, str):
|
| 41 |
+
if not os.path.exists(audio_data):
|
| 42 |
+
return f"<<ERROR: File '{audio_data}' not found!>>"
|
| 43 |
+
audio_samples, _ = librosa.load(audio_data, sr=LID_SAMPLING_RATE, mono=True)
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
else:
|
| 46 |
+
return "<<ERROR: Invalid Audio Input>>"
|
| 47 |
+
|
| 48 |
+
# Process Input
|
| 49 |
+
inputs = processor(audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt")
|
| 50 |
|
| 51 |
+
# Select Device
|
| 52 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 53 |
model.to(device)
|
| 54 |
inputs = inputs.to(device)
|
| 55 |
|
| 56 |
+
# Predict Language
|
| 57 |
with torch.no_grad():
|
| 58 |
logit = model(**inputs).logits
|
| 59 |
|
| 60 |
+
# Compute Probabilities
|
| 61 |
logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1)
|
| 62 |
scores, indices = torch.topk(logit_lsm, 5, dim=-1)
|
| 63 |
+
scores, indices = torch.exp(scores).cpu().tolist(), indices.cpu().tolist()
|
| 64 |
+
|
| 65 |
+
# Map to Language Labels
|
| 66 |
iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)}
|
| 67 |
+
|
| 68 |
+
# Confidence Check
|
| 69 |
if max(iso2score.values()) < LID_THRESHOLD:
|
| 70 |
+
return "Low confidence in language detection. No output shown."
|
|
|
|
| 71 |
|
| 72 |
+
return {LID_LANGUAGES.get(iso, iso): score for iso, score in iso2score.items()}
|
| 73 |
|
| 74 |
+
# Example Usage
|
| 75 |
LID_EXAMPLES = [
|
| 76 |
["upload/english.mp3"],
|
| 77 |
["upload/tamil.mp3"],
|
| 78 |
["upload/burmese.mp3"],
|
| 79 |
]
|
|
|
|
|
|
|
|
|