Spaces:
Runtime error
Runtime error
Delete asr.py(auto/audio)
Browse files- asr.py(auto/audio) +0 -59
asr.py(auto/audio)
DELETED
|
@@ -1,59 +0,0 @@
|
|
| 1 |
-
import librosa
|
| 2 |
-
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
-
import langid # Language detection library
|
| 5 |
-
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
| 6 |
-
|
| 7 |
-
ASR_SAMPLING_RATE = 16_000
|
| 8 |
-
MODEL_ID = "facebook/mms-1b-all"
|
| 9 |
-
|
| 10 |
-
# Load MMS Model
|
| 11 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
| 12 |
-
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 13 |
-
model.eval()
|
| 14 |
-
|
| 15 |
-
def detect_language(text):
|
| 16 |
-
"""Detects language using langid (fast & lightweight)."""
|
| 17 |
-
lang, _ = langid.classify(text)
|
| 18 |
-
return lang if lang in ["en", "sw"] else "en" # Default to English
|
| 19 |
-
|
| 20 |
-
def transcribe_audio(audio_data=None):
|
| 21 |
-
if not audio_data:
|
| 22 |
-
return "<<ERROR: Empty Audio Input>>"
|
| 23 |
-
|
| 24 |
-
# Process Microphone Input
|
| 25 |
-
if isinstance(audio_data, tuple):
|
| 26 |
-
sr, audio_samples = audio_data
|
| 27 |
-
audio_samples = (audio_samples / 32768.0).astype(np.float32)
|
| 28 |
-
if sr != ASR_SAMPLING_RATE:
|
| 29 |
-
audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE)
|
| 30 |
-
|
| 31 |
-
# Process File Upload Input
|
| 32 |
-
else:
|
| 33 |
-
if not isinstance(audio_data, str):
|
| 34 |
-
return "<<ERROR: Invalid Audio Input>>"
|
| 35 |
-
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
|
| 36 |
-
|
| 37 |
-
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
|
| 38 |
-
|
| 39 |
-
# **Step 1: Transcribe without Language Detection**
|
| 40 |
-
with torch.no_grad():
|
| 41 |
-
outputs = model(**inputs).logits
|
| 42 |
-
ids = torch.argmax(outputs, dim=-1)[0]
|
| 43 |
-
raw_transcription = processor.decode(ids)
|
| 44 |
-
|
| 45 |
-
# **Step 2: Detect Language from Transcription**
|
| 46 |
-
detected_lang = detect_language(raw_transcription)
|
| 47 |
-
lang_code = "eng" if detected_lang == "en" else "swh"
|
| 48 |
-
|
| 49 |
-
# **Step 3: Reload Model with Correct Adapter**
|
| 50 |
-
processor.tokenizer.set_target_lang(lang_code)
|
| 51 |
-
model.load_adapter(lang_code)
|
| 52 |
-
|
| 53 |
-
# **Step 4: Transcribe Again with Correct Adapter**
|
| 54 |
-
with torch.no_grad():
|
| 55 |
-
outputs = model(**inputs).logits
|
| 56 |
-
ids = torch.argmax(outputs, dim=-1)[0]
|
| 57 |
-
final_transcription = processor.decode(ids)
|
| 58 |
-
|
| 59 |
-
return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|