Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,83 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Initialize chat history
|
| 6 |
if "messages" not in st.session_state:
|
|
@@ -12,13 +89,43 @@ for message in st.session_state.messages:
|
|
| 12 |
st.markdown(message["content"])
|
| 13 |
|
| 14 |
# React to user input
|
| 15 |
-
if prompt := st.chat_input("
|
| 16 |
# Display user message in chat message container
|
| 17 |
st.chat_message("user").markdown(prompt)
|
| 18 |
# Add user message to chat history
|
| 19 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Display assistant response in chat message container
|
| 23 |
with st.chat_message("assistant"):
|
| 24 |
st.markdown(response)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
from transformers import StoppingCriteriaList, StoppingCriteria
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from pinecone import Pinecone
|
| 7 |
+
import warnings
|
| 8 |
|
| 9 |
+
|
| 10 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 11 |
+
|
| 12 |
+
# model_name = "AI-Sweden-Models/gpt-sw3-126m-instruct"
|
| 13 |
+
model_name = "AI-Sweden-Models/gpt-sw3-1.3b-instruct"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
|
| 18 |
+
# Initialize Tokenizer & Model
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def read_file(file_path: str) -> str:
|
| 23 |
+
"""Read the contents of a file."""
|
| 24 |
+
with open(file_path, "r") as file:
|
| 25 |
+
return file.read()
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 29 |
+
model.eval()
|
| 30 |
+
model.to(device)
|
| 31 |
+
|
| 32 |
+
document_encoder_model = SentenceTransformer("KBLab/sentence-bert-swedish-cased")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# Note: 'index1' has been pre-created in the pinecone console
|
| 36 |
+
# read the pinecone api key from a file
|
| 37 |
+
pinecone_api_key = read_file("language_model\pinecone_api_key.txt")
|
| 38 |
+
pc = Pinecone(api_key=pinecone_api_key)
|
| 39 |
+
index = pc.Index("index1")
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def query_pincecone_namespace(
|
| 43 |
+
vector_databse_index: Pinecone, q_embedding: str, namespace: str
|
| 44 |
+
) -> str:
|
| 45 |
+
result = vector_databse_index.query(
|
| 46 |
+
namespace=namespace,
|
| 47 |
+
vector=q_embedding.tolist(),
|
| 48 |
+
top_k=1,
|
| 49 |
+
include_values=True,
|
| 50 |
+
include_metadata=True,
|
| 51 |
+
)
|
| 52 |
+
results = []
|
| 53 |
+
for match in result.matches:
|
| 54 |
+
results.append(match.metadata["paragraph"])
|
| 55 |
+
return results[0]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def generate_prompt(llmprompt: str) -> str:
|
| 59 |
+
"""Generates a prompt for the GPT-3 model"""
|
| 60 |
+
start_token = "<|endoftext|><s>"
|
| 61 |
+
end_token = "<s>"
|
| 62 |
+
return f"{start_token}\nUser:\n{llmprompt}\n{end_token}\nBot:\n".strip()
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def encode_query(query: str) -> torch.Tensor:
|
| 66 |
+
"""Encode the query using the model's tokenizer"""
|
| 67 |
+
return document_encoder_model.encode(query)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class StopOnTokenCriteria(StoppingCriteria):
|
| 71 |
+
def __init__(self, stop_token_id):
|
| 72 |
+
self.stop_token_id = stop_token_id
|
| 73 |
+
|
| 74 |
+
def __call__(self, input_ids, scores, **kwargs):
|
| 75 |
+
return input_ids[0, -1] == self.stop_token_id
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
stop_on_token_criteria = StopOnTokenCriteria(stop_token_id=tokenizer.bos_token_id)
|
| 79 |
+
|
| 80 |
+
st.title("Paralegal Assistant")
|
| 81 |
|
| 82 |
# Initialize chat history
|
| 83 |
if "messages" not in st.session_state:
|
|
|
|
| 89 |
st.markdown(message["content"])
|
| 90 |
|
| 91 |
# React to user input
|
| 92 |
+
if prompt := st.chat_input("Skriv din fråga..."):
|
| 93 |
# Display user message in chat message container
|
| 94 |
st.chat_message("user").markdown(prompt)
|
| 95 |
# Add user message to chat history
|
| 96 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 97 |
|
| 98 |
+
query = query_pincecone_namespace(
|
| 99 |
+
vector_databse_index=index,
|
| 100 |
+
q_embedding=encode_query(query=prompt),
|
| 101 |
+
namespace="ns-parent-balk",
|
| 102 |
+
)
|
| 103 |
+
llmprompt = (
|
| 104 |
+
"Besvara följande fråga på ett sakligt, kortfattat och formellt vis: "
|
| 105 |
+
+ prompt
|
| 106 |
+
+ "\n"
|
| 107 |
+
+ "Använd följande text som referens när du besvarar frågan och hänvisa fakta i texten: \n"
|
| 108 |
+
+ query
|
| 109 |
+
)
|
| 110 |
+
llmprompt = generate_prompt(llmprompt=llmprompt)
|
| 111 |
+
|
| 112 |
+
# # Convert prompt to tokens
|
| 113 |
+
input_ids = tokenizer(llmprompt, return_tensors="pt")["input_ids"].to(device)
|
| 114 |
+
|
| 115 |
+
# Genqerate tokens based om prompt
|
| 116 |
+
generated_token_ids = model.generate(
|
| 117 |
+
inputs=input_ids,
|
| 118 |
+
max_new_tokens=128,
|
| 119 |
+
do_sample=True,
|
| 120 |
+
temperature=0.8,
|
| 121 |
+
top_p=1,
|
| 122 |
+
stopping_criteria=StoppingCriteriaList([stop_on_token_criteria]),
|
| 123 |
+
)[0]
|
| 124 |
+
|
| 125 |
+
# Decode the generated tokens
|
| 126 |
+
generated_text = tokenizer.decode(generated_token_ids[len(input_ids[0]) : -1])
|
| 127 |
+
|
| 128 |
+
response = f"{generated_text}"
|
| 129 |
# Display assistant response in chat message container
|
| 130 |
with st.chat_message("assistant"):
|
| 131 |
st.markdown(response)
|