Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| import pandas as pd | |
| import json | |
| pipe = pipeline("summarization", model="Gabriel/bart-base-cnn-xsum-swe") | |
| def generate(in_text): | |
| print(in_text) | |
| answer = pipe(in_text, num_beams=5 ,min_length=20, max_length=120) | |
| print(answer) | |
| return answer[0]["summary_text"] | |
| def update_history(df, in_text, gen_text ,generation_type, parameters): | |
| # get rid of first seed phrase | |
| new_row = [{"In_text": in_text, | |
| "Gen_text": gen_text, | |
| "Generation Type": generation_type, | |
| "Parameters": json.dumps(parameters)}] | |
| return pd.concat([df, pd.DataFrame(new_row)]) | |
| def generate_transformer(in_text, num_beams ,history): | |
| gen_text= generate(in_text) | |
| return gen_text, update_history(history, in_text, gen_text, "Transformer", {"num_beams": num_beams}) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("""# Summarization Engine!""") | |
| with gr.Accordion("See Details", open=False): | |
| gr.Markdown("lorem ipsum") | |
| with gr.Tabs(): | |
| with gr.TabItem("Transformer Generation"): | |
| gr.Markdown( | |
| """The default parameters for distilgpt2 work well to generate moves. Use this tab as | |
| a baseline for your experiments.""") | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| text_baseline_transformer= gr.Textbox(lines=4,label="Input Text", placeholder="hej hej",) | |
| with gr.Column(scale=3): | |
| with gr.Row(): | |
| num_beams = gr.Slider(minimum=2, maximum=10, value=2, step=1, label="Number of Beams2") | |
| output_basline_transformer = gr.Textbox(label="Output Text") | |
| transformer_button = gr.Button("Summarize!") | |
| # with gr.TabItem("Strong Baseline"): | |
| # gr.Markdown( | |
| # """The default parameters for distilgpt2 work well to generate moves. Use this tab as | |
| # a baseline for your experiments.""") | |
| # with gr.Row(): | |
| # with gr.Column(scale=4): | |
| # text_baseline= gr.Textbox(lines=4,label="Input Text", placeholder="hej hej",) | |
| # with gr.Column(scale=3): | |
| # with gr.Row(): | |
| # num_beams2 = gr.Slider(minimum=2, maximum=10, value=2, step=1, label="Number of Beams2") | |
| # num_beams3 = gr.Slider(minimum=2, maximum=10, value=2, step=1, label="Number of Beams3") | |
| # output_basline = gr.Textbox(label="Output Text") | |
| # baseline_button = gr.Button("Summarize!") | |
| # with gr.TabItem("LexRank"): | |
| # gr.Markdown( | |
| # """The default parameters for distilgpt2 work well to generate moves. Use this tab as | |
| # a baseline for your experiments.""") | |
| # with gr.Row(): | |
| # label="Number of Beams") | |
| # text_baseline= gr.Textbox(label="Input Text", placeholder="hej hej",) | |
| # output_basline = gr.Textbox(label="Output Text") | |
| # baseline_button = gr.Button("Summarize!") | |
| gr.Examples([["hi", 5]], [text_baseline_transformer, num_beams]) | |
| with gr.Box(): | |
| gr.Markdown("<h3> Generation History <h3>") | |
| # Displays a dataframe with the history of moves generated, with parameters | |
| history = gr.Dataframe(headers=["In_text", "Gen_text", "Generation Type", "Parameters"], overflow_row_behaviour="show_ends", wrap=True) | |
| with gr.Box(): | |
| gr.Markdown("<h3>How did you make this?<h3>") | |
| # gr.Markdown("""hej bottom.""") | |
| transformer_button.click(generate_transformer, inputs=[text_baseline_transformer, num_beams ,history], outputs=[output_basline_transformer , history] ) | |
| # baseline_button.click(generate_transformer, inputs=[text_baseline, num_beams2 ,history], outputs=[output_basline,history] ) | |
| demo.launch() |