Spaces:
Runtime error
Runtime error
Update README.md
Browse files
README.md
CHANGED
|
@@ -11,171 +11,3 @@ app_file: app.py
|
|
| 11 |
pinned: true
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
| 15 |
-
import numpy as np
|
| 16 |
-
import time
|
| 17 |
-
from pathlib import Path
|
| 18 |
-
|
| 19 |
-
# Import your PyLaia implementation
|
| 20 |
-
from htrflow.models.teklia.pylaia import PyLaia
|
| 21 |
-
from htrflow.utils.imgproc import read
|
| 22 |
-
|
| 23 |
-
NORMAL_IMAGE_PATH = "examples/images/lines/A0068699_00021_region0_line1.jpg"
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def create_test_images(base_image_path, num_images=100):
|
| 27 |
-
"""Create test images - mix of real and synthetic variations."""
|
| 28 |
-
images = []
|
| 29 |
-
|
| 30 |
-
# Load the real image
|
| 31 |
-
real_image = read(base_image_path)
|
| 32 |
-
|
| 33 |
-
# Create test images
|
| 34 |
-
for i in range(num_images):
|
| 35 |
-
if i % 2 == 0:
|
| 36 |
-
# Use the real image
|
| 37 |
-
images.append(real_image.copy())
|
| 38 |
-
else:
|
| 39 |
-
# Create a slightly modified version (add some noise)
|
| 40 |
-
noisy_image = real_image.copy()
|
| 41 |
-
noise = np.random.normal(0, 10, real_image.shape).astype(np.uint8)
|
| 42 |
-
noisy_image = np.clip(noisy_image.astype(np.int16) + noise, 0, 255).astype(np.uint8)
|
| 43 |
-
images.append(noisy_image)
|
| 44 |
-
|
| 45 |
-
return images
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def benchmark_pylaia(model_name="Teklia/pylaia-belfort", num_images=100):
|
| 49 |
-
"""Benchmark PyLaia with different chunk sizes."""
|
| 50 |
-
|
| 51 |
-
print(f"\n{'='*80}")
|
| 52 |
-
print(f"PyLaia Chunking Performance Benchmark")
|
| 53 |
-
print(f"{'='*80}")
|
| 54 |
-
print(f"Model: {model_name}")
|
| 55 |
-
print(f"Number of test images: {num_images}")
|
| 56 |
-
|
| 57 |
-
# Initialize model
|
| 58 |
-
print("\nInitializing model...")
|
| 59 |
-
model = PyLaia(model_name)
|
| 60 |
-
print(f"Device: {model.device}")
|
| 61 |
-
|
| 62 |
-
# Create test images
|
| 63 |
-
print(f"\nCreating {num_images} test images...")
|
| 64 |
-
test_images = create_test_images(NORMAL_IMAGE_PATH, num_images)
|
| 65 |
-
|
| 66 |
-
# Test different chunk sizes
|
| 67 |
-
chunk_sizes = [1, 5, 10, 20, 50, 100]
|
| 68 |
-
results = {}
|
| 69 |
-
|
| 70 |
-
print(f"\n{'='*80}")
|
| 71 |
-
print("Running benchmarks...")
|
| 72 |
-
print(f"{'='*80}")
|
| 73 |
-
|
| 74 |
-
for chunk_size in chunk_sizes:
|
| 75 |
-
if chunk_size > num_images:
|
| 76 |
-
continue
|
| 77 |
-
|
| 78 |
-
print(f"\nTesting chunk_size={chunk_size}...")
|
| 79 |
-
|
| 80 |
-
# Warm-up run
|
| 81 |
-
print(" Warm-up run...")
|
| 82 |
-
_ = model._predict(test_images[:min(5, num_images)], chunk_size=chunk_size)
|
| 83 |
-
|
| 84 |
-
# Actual timing
|
| 85 |
-
print(" Timing run...")
|
| 86 |
-
start_time = time.time()
|
| 87 |
-
|
| 88 |
-
predictions = model._predict(
|
| 89 |
-
test_images,
|
| 90 |
-
batch_size=8,
|
| 91 |
-
temperature=1.0,
|
| 92 |
-
chunk_size=chunk_size
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
end_time = time.time()
|
| 96 |
-
elapsed_time = end_time - start_time
|
| 97 |
-
|
| 98 |
-
results[chunk_size] = {
|
| 99 |
-
'time': elapsed_time,
|
| 100 |
-
'images_per_second': num_images / elapsed_time,
|
| 101 |
-
'ms_per_image': (elapsed_time / num_images) * 1000,
|
| 102 |
-
'predictions': predictions
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
print(f" ✓ Completed in {elapsed_time:.2f}s")
|
| 106 |
-
print(f" Speed: {results[chunk_size]['images_per_second']:.2f} images/second")
|
| 107 |
-
print(f" Time per image: {results[chunk_size]['ms_per_image']:.2f}ms")
|
| 108 |
-
|
| 109 |
-
# Print summary table
|
| 110 |
-
print(f"\n{'='*80}")
|
| 111 |
-
print("PERFORMANCE SUMMARY")
|
| 112 |
-
print(f"{'='*80}")
|
| 113 |
-
print(f"{'Chunk Size':>12} | {'Total Time':>10} | {'Images/sec':>12} | {'ms/image':>10} | {'Speedup':>10}")
|
| 114 |
-
print(f"{'-'*12}-+-{'-'*10}-+-{'-'*12}-+-{'-'*10}-+-{'-'*10}")
|
| 115 |
-
|
| 116 |
-
baseline_time = results[1]['time'] if 1 in results else list(results.values())[0]['time']
|
| 117 |
-
|
| 118 |
-
for chunk_size in sorted(results.keys()):
|
| 119 |
-
data = results[chunk_size]
|
| 120 |
-
speedup = baseline_time / data['time']
|
| 121 |
-
print(f"{chunk_size:>12} | {data['time']:>10.2f}s | {data['images_per_second']:>12.2f} | "
|
| 122 |
-
f"{data['ms_per_image']:>10.2f} | {speedup:>10.2f}x")
|
| 123 |
-
|
| 124 |
-
# Verify consistency
|
| 125 |
-
print(f"\n{'='*80}")
|
| 126 |
-
print("Verifying result consistency...")
|
| 127 |
-
baseline_texts = [r.texts[0] for r in results[1]['predictions']] if 1 in results else None
|
| 128 |
-
|
| 129 |
-
all_consistent = True
|
| 130 |
-
for chunk_size, data in results.items():
|
| 131 |
-
if baseline_texts and chunk_size != 1:
|
| 132 |
-
chunk_texts = [r.texts[0] for r in data['predictions']]
|
| 133 |
-
if chunk_texts != baseline_texts:
|
| 134 |
-
print(f" ✗ Results mismatch for chunk_size={chunk_size}")
|
| 135 |
-
all_consistent = False
|
| 136 |
-
|
| 137 |
-
if all_consistent:
|
| 138 |
-
print(" ✓ All chunk sizes produced identical results")
|
| 139 |
-
|
| 140 |
-
# Find optimal chunk size
|
| 141 |
-
optimal_chunk = min(results.keys(), key=lambda k: results[k]['time'])
|
| 142 |
-
optimal_speedup = baseline_time / results[optimal_chunk]['time']
|
| 143 |
-
|
| 144 |
-
print(f"\n{'='*80}")
|
| 145 |
-
print(f"🚀 OPTIMAL CONFIGURATION")
|
| 146 |
-
print(f"{'='*80}")
|
| 147 |
-
print(f"Chunk size: {optimal_chunk}")
|
| 148 |
-
print(f"Processing time: {results[optimal_chunk]['time']:.2f}s")
|
| 149 |
-
print(f"Speed: {results[optimal_chunk]['images_per_second']:.2f} images/second")
|
| 150 |
-
print(f"Speedup: {optimal_speedup:.2f}x")
|
| 151 |
-
|
| 152 |
-
return results
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
def quick_test():
|
| 156 |
-
"""Quick test with 20 images for faster results."""
|
| 157 |
-
print("\n" + "="*80)
|
| 158 |
-
print("QUICK TEST (20 images)")
|
| 159 |
-
print("="*80)
|
| 160 |
-
|
| 161 |
-
benchmark_pylaia(num_images=20)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def full_test():
|
| 165 |
-
"""Full test with 100 images."""
|
| 166 |
-
print("\n" + "="*80)
|
| 167 |
-
print("FULL TEST (100 images)")
|
| 168 |
-
print("="*80)
|
| 169 |
-
|
| 170 |
-
benchmark_pylaia(num_images=100)
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
if __name__ == "__main__":
|
| 174 |
-
# Run quick test first
|
| 175 |
-
quick_test()
|
| 176 |
-
|
| 177 |
-
# Uncomment to run full test
|
| 178 |
-
# full_test()
|
| 179 |
-
|
| 180 |
-
# Or run with custom parameters
|
| 181 |
-
# benchmark_pylaia(model_name="Teklia/pylaia-belfort", num_images=50)
|
|
|
|
| 11 |
pinned: true
|
| 12 |
---
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|