Spaces:
Runtime error
Runtime error
Update LexRank.py
Browse files- LexRank.py +120 -0
LexRank.py
CHANGED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import numpy as np
|
| 3 |
+
from scipy.sparse.csgraph import connected_components
|
| 4 |
+
from scipy.special import softmax
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
|
| 9 |
+
def degree_centrality_scores(
|
| 10 |
+
similarity_matrix,
|
| 11 |
+
threshold=None,
|
| 12 |
+
increase_power=True,
|
| 13 |
+
):
|
| 14 |
+
if not (
|
| 15 |
+
threshold is None
|
| 16 |
+
or isinstance(threshold, float)
|
| 17 |
+
and 0 <= threshold < 1
|
| 18 |
+
):
|
| 19 |
+
raise ValueError(
|
| 20 |
+
'\'threshold\' should be a floating-point number '
|
| 21 |
+
'from the interval [0, 1) or None',
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
if threshold is None:
|
| 25 |
+
markov_matrix = create_markov_matrix(similarity_matrix)
|
| 26 |
+
|
| 27 |
+
else:
|
| 28 |
+
markov_matrix = create_markov_matrix_discrete(
|
| 29 |
+
similarity_matrix,
|
| 30 |
+
threshold,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
scores = stationary_distribution(
|
| 34 |
+
markov_matrix,
|
| 35 |
+
increase_power=increase_power,
|
| 36 |
+
normalized=False,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
return scores
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def _power_method(transition_matrix, increase_power=True, max_iter=10000):
|
| 43 |
+
eigenvector = np.ones(len(transition_matrix))
|
| 44 |
+
|
| 45 |
+
if len(eigenvector) == 1:
|
| 46 |
+
return eigenvector
|
| 47 |
+
|
| 48 |
+
transition = transition_matrix.transpose()
|
| 49 |
+
|
| 50 |
+
for _ in range(max_iter):
|
| 51 |
+
eigenvector_next = np.dot(transition, eigenvector)
|
| 52 |
+
|
| 53 |
+
if np.allclose(eigenvector_next, eigenvector):
|
| 54 |
+
return eigenvector_next
|
| 55 |
+
|
| 56 |
+
eigenvector = eigenvector_next
|
| 57 |
+
|
| 58 |
+
if increase_power:
|
| 59 |
+
transition = np.dot(transition, transition)
|
| 60 |
+
|
| 61 |
+
logger.warning("Maximum number of iterations for power method exceeded without convergence!")
|
| 62 |
+
return eigenvector_next
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def connected_nodes(matrix):
|
| 66 |
+
_, labels = connected_components(matrix)
|
| 67 |
+
|
| 68 |
+
groups = []
|
| 69 |
+
|
| 70 |
+
for tag in np.unique(labels):
|
| 71 |
+
group = np.where(labels == tag)[0]
|
| 72 |
+
groups.append(group)
|
| 73 |
+
|
| 74 |
+
return groups
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def create_markov_matrix(weights_matrix):
|
| 78 |
+
n_1, n_2 = weights_matrix.shape
|
| 79 |
+
if n_1 != n_2:
|
| 80 |
+
raise ValueError('\'weights_matrix\' should be square')
|
| 81 |
+
|
| 82 |
+
row_sum = weights_matrix.sum(axis=1, keepdims=True)
|
| 83 |
+
|
| 84 |
+
# normalize probability distribution differently if we have negative transition values
|
| 85 |
+
if np.min(weights_matrix) <= 0:
|
| 86 |
+
return softmax(weights_matrix, axis=1)
|
| 87 |
+
|
| 88 |
+
return weights_matrix / row_sum
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def create_markov_matrix_discrete(weights_matrix, threshold):
|
| 92 |
+
discrete_weights_matrix = np.zeros(weights_matrix.shape)
|
| 93 |
+
ixs = np.where(weights_matrix >= threshold)
|
| 94 |
+
discrete_weights_matrix[ixs] = 1
|
| 95 |
+
|
| 96 |
+
return create_markov_matrix(discrete_weights_matrix)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def stationary_distribution(
|
| 100 |
+
transition_matrix,
|
| 101 |
+
increase_power=True,
|
| 102 |
+
normalized=True,
|
| 103 |
+
):
|
| 104 |
+
n_1, n_2 = transition_matrix.shape
|
| 105 |
+
if n_1 != n_2:
|
| 106 |
+
raise ValueError('\'transition_matrix\' should be square')
|
| 107 |
+
|
| 108 |
+
distribution = np.zeros(n_1)
|
| 109 |
+
|
| 110 |
+
grouped_indices = connected_nodes(transition_matrix)
|
| 111 |
+
|
| 112 |
+
for group in grouped_indices:
|
| 113 |
+
t_matrix = transition_matrix[np.ix_(group, group)]
|
| 114 |
+
eigenvector = _power_method(t_matrix, increase_power=increase_power)
|
| 115 |
+
distribution[group] = eigenvector
|
| 116 |
+
|
| 117 |
+
if normalized:
|
| 118 |
+
distribution /= n_1
|
| 119 |
+
|
| 120 |
+
return distribution
|