Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -143,16 +143,11 @@ def process_htr(image: Image.Image, document_type: Literal["letter_english", "le
|
|
| 143 |
except Exception as pipeline_error:
|
| 144 |
return {"success": False, "error": f"Pipeline execution failed: {str(pipeline_error)}", "results": None}
|
| 145 |
|
| 146 |
-
img_buffer = io.BytesIO()
|
| 147 |
-
image.save(img_buffer, format="PNG")
|
| 148 |
-
image_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
| 149 |
-
|
| 150 |
results = extract_text_results(processed_collection, confidence_threshold)
|
|
|
|
| 151 |
|
| 152 |
processing_state = {
|
| 153 |
-
"
|
| 154 |
-
"image_base64": image_base64,
|
| 155 |
-
"image_size": image.size,
|
| 156 |
"document_type": document_type,
|
| 157 |
"confidence_threshold": confidence_threshold,
|
| 158 |
"timestamp": datetime.now().isoformat(),
|
|
@@ -161,7 +156,7 @@ def process_htr(image: Image.Image, document_type: Literal["letter_english", "le
|
|
| 161 |
return {
|
| 162 |
"success": True,
|
| 163 |
"results": results,
|
| 164 |
-
"processing_state": json.dumps(processing_state
|
| 165 |
"metadata": {
|
| 166 |
"total_lines": len(results.get("text_lines", [])),
|
| 167 |
"average_confidence": results.get("average_confidence", 0),
|
|
@@ -175,58 +170,44 @@ def process_htr(image: Image.Image, document_type: Literal["letter_english", "le
|
|
| 175 |
if os.path.exists(temp_image_path):
|
| 176 |
os.unlink(temp_image_path)
|
| 177 |
|
| 178 |
-
def visualize_results(processing_state: str, visualization_type: Literal["overlay", "confidence_heatmap", "text_regions"] = "overlay", show_confidence: bool = True, highlight_low_confidence: bool = True
|
| 179 |
"""Generate interactive visualizations of HTR processing results."""
|
| 180 |
try:
|
|
|
|
|
|
|
|
|
|
| 181 |
state = json.loads(processing_state)
|
|
|
|
| 182 |
|
| 183 |
-
|
| 184 |
-
original_image = image
|
| 185 |
-
else:
|
| 186 |
-
image_data = base64.b64decode(state["image_base64"])
|
| 187 |
-
original_image = Image.open(io.BytesIO(image_data))
|
| 188 |
-
|
| 189 |
-
# Recreate the collection from the stored image
|
| 190 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
| 191 |
-
original_image.save(temp_file.name, "PNG")
|
| 192 |
-
temp_image_path = temp_file.name
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
processed_collection = pipeline.run(collection)
|
| 198 |
-
|
| 199 |
-
viz_image = create_visualization(original_image, processed_collection, visualization_type, show_confidence, highlight_low_confidence)
|
| 200 |
-
|
| 201 |
-
img_buffer = io.BytesIO()
|
| 202 |
-
viz_image.save(img_buffer, format="PNG")
|
| 203 |
-
img_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
finally:
|
| 216 |
-
if os.path.exists(temp_image_path):
|
| 217 |
-
os.unlink(temp_image_path)
|
| 218 |
|
| 219 |
except Exception as e:
|
| 220 |
return {"success": False, "error": f"Visualization generation failed: {str(e)}", "visualization": None}
|
| 221 |
|
| 222 |
-
def export_results(processing_state: str, output_formats: List[Literal["txt", "json", "alto", "page"]] = ["txt"], confidence_filter: float = 0.0) -> Dict:
|
| 223 |
"""Export HTR results to multiple formats using HTRflow's native export functionality."""
|
| 224 |
try:
|
|
|
|
|
|
|
|
|
|
| 225 |
state = json.loads(processing_state)
|
| 226 |
|
| 227 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
| 228 |
-
image_data = base64.b64decode(state["image_base64"])
|
| 229 |
-
image = Image.open(io.BytesIO(image_data))
|
| 230 |
image.save(temp_file.name, "PNG")
|
| 231 |
temp_image_path = temp_file.name
|
| 232 |
|
|
@@ -279,19 +260,33 @@ def extract_text_results(collection: Collection, confidence_threshold: float) ->
|
|
| 279 |
results = {"extracted_text": "", "text_lines": [], "confidence_scores": []}
|
| 280 |
for page in collection.pages:
|
| 281 |
for node in page.traverse():
|
| 282 |
-
if hasattr(node, "text") and node.text
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
"
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
| 290 |
|
| 291 |
results["average_confidence"] = sum(results["confidence_scores"]) / len(results["confidence_scores"]) if results["confidence_scores"] else 0
|
| 292 |
return results
|
| 293 |
|
| 294 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
viz_image = image.copy()
|
| 296 |
draw = ImageDraw.Draw(viz_image)
|
| 297 |
|
|
@@ -300,34 +295,33 @@ def create_visualization(image, collection, visualization_type, show_confidence,
|
|
| 300 |
except:
|
| 301 |
font = ImageFont.load_default()
|
| 302 |
|
| 303 |
-
for
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
if
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
draw.rectangle(bbox, outline=color, width=3)
|
| 331 |
|
| 332 |
return viz_image.convert("RGB") if visualization_type == "confidence_heatmap" else viz_image
|
| 333 |
|
|
@@ -351,10 +345,10 @@ def create_htrflow_mcp_server():
|
|
| 351 |
fn=visualize_results,
|
| 352 |
inputs=[
|
| 353 |
gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
|
|
|
|
| 354 |
gr.Dropdown(choices=["overlay", "confidence_heatmap", "text_regions"], value="overlay", label="Visualization Type"),
|
| 355 |
gr.Checkbox(value=True, label="Show Confidence Scores"),
|
| 356 |
gr.Checkbox(value=True, label="Highlight Low Confidence"),
|
| 357 |
-
gr.Image(type="pil", label="Image (optional)"),
|
| 358 |
],
|
| 359 |
outputs=gr.JSON(label="Visualization Results"),
|
| 360 |
title="Results Visualization Tool",
|
|
@@ -365,6 +359,7 @@ def create_htrflow_mcp_server():
|
|
| 365 |
fn=export_results,
|
| 366 |
inputs=[
|
| 367 |
gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
|
|
|
|
| 368 |
gr.CheckboxGroup(choices=["txt", "json", "alto", "page"], value=["txt"], label="Output Formats"),
|
| 369 |
gr.Slider(0.0, 1.0, value=0.0, label="Confidence Filter"),
|
| 370 |
],
|
|
|
|
| 143 |
except Exception as pipeline_error:
|
| 144 |
return {"success": False, "error": f"Pipeline execution failed: {str(pipeline_error)}", "results": None}
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
results = extract_text_results(processed_collection, confidence_threshold)
|
| 147 |
+
collection_data = serialize_collection_data(processed_collection)
|
| 148 |
|
| 149 |
processing_state = {
|
| 150 |
+
"collection_data": collection_data,
|
|
|
|
|
|
|
| 151 |
"document_type": document_type,
|
| 152 |
"confidence_threshold": confidence_threshold,
|
| 153 |
"timestamp": datetime.now().isoformat(),
|
|
|
|
| 156 |
return {
|
| 157 |
"success": True,
|
| 158 |
"results": results,
|
| 159 |
+
"processing_state": json.dumps(processing_state),
|
| 160 |
"metadata": {
|
| 161 |
"total_lines": len(results.get("text_lines", [])),
|
| 162 |
"average_confidence": results.get("average_confidence", 0),
|
|
|
|
| 170 |
if os.path.exists(temp_image_path):
|
| 171 |
os.unlink(temp_image_path)
|
| 172 |
|
| 173 |
+
def visualize_results(processing_state: str, image: Image.Image, visualization_type: Literal["overlay", "confidence_heatmap", "text_regions"] = "overlay", show_confidence: bool = True, highlight_low_confidence: bool = True) -> Dict:
|
| 174 |
"""Generate interactive visualizations of HTR processing results."""
|
| 175 |
try:
|
| 176 |
+
if image is None:
|
| 177 |
+
return {"success": False, "error": "Image is required for visualization", "visualization": None}
|
| 178 |
+
|
| 179 |
state = json.loads(processing_state)
|
| 180 |
+
collection_data = state["collection_data"]
|
| 181 |
|
| 182 |
+
viz_image = create_visualization(image, collection_data, visualization_type, show_confidence, highlight_low_confidence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
img_buffer = io.BytesIO()
|
| 185 |
+
viz_image.save(img_buffer, format="PNG")
|
| 186 |
+
img_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
return {
|
| 189 |
+
"success": True,
|
| 190 |
+
"visualization": {
|
| 191 |
+
"image_base64": img_base64,
|
| 192 |
+
"image_format": "PNG",
|
| 193 |
+
"visualization_type": visualization_type,
|
| 194 |
+
"dimensions": viz_image.size,
|
| 195 |
+
},
|
| 196 |
+
"metadata": {"total_elements": len(collection_data.get("text_elements", []))},
|
| 197 |
+
}
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
except Exception as e:
|
| 200 |
return {"success": False, "error": f"Visualization generation failed: {str(e)}", "visualization": None}
|
| 201 |
|
| 202 |
+
def export_results(processing_state: str, image: Image.Image, output_formats: List[Literal["txt", "json", "alto", "page"]] = ["txt"], confidence_filter: float = 0.0) -> Dict:
|
| 203 |
"""Export HTR results to multiple formats using HTRflow's native export functionality."""
|
| 204 |
try:
|
| 205 |
+
if image is None:
|
| 206 |
+
return {"success": False, "error": "Image is required for export", "exports": None}
|
| 207 |
+
|
| 208 |
state = json.loads(processing_state)
|
| 209 |
|
| 210 |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
|
|
|
|
|
|
| 211 |
image.save(temp_file.name, "PNG")
|
| 212 |
temp_image_path = temp_file.name
|
| 213 |
|
|
|
|
| 260 |
results = {"extracted_text": "", "text_lines": [], "confidence_scores": []}
|
| 261 |
for page in collection.pages:
|
| 262 |
for node in page.traverse():
|
| 263 |
+
if hasattr(node, "text") and node.text:
|
| 264 |
+
confidence = getattr(node, "confidence", 1.0)
|
| 265 |
+
if confidence >= confidence_threshold:
|
| 266 |
+
results["text_lines"].append({
|
| 267 |
+
"text": node.text,
|
| 268 |
+
"confidence": confidence,
|
| 269 |
+
"bbox": getattr(node, "bbox", None),
|
| 270 |
+
})
|
| 271 |
+
results["extracted_text"] += node.text + "\n"
|
| 272 |
+
results["confidence_scores"].append(confidence)
|
| 273 |
|
| 274 |
results["average_confidence"] = sum(results["confidence_scores"]) / len(results["confidence_scores"]) if results["confidence_scores"] else 0
|
| 275 |
return results
|
| 276 |
|
| 277 |
+
def serialize_collection_data(collection: Collection) -> Dict:
|
| 278 |
+
text_elements = []
|
| 279 |
+
for page in collection.pages:
|
| 280 |
+
for node in page.traverse():
|
| 281 |
+
if hasattr(node, "text") and node.text:
|
| 282 |
+
text_elements.append({
|
| 283 |
+
"text": node.text,
|
| 284 |
+
"confidence": getattr(node, "confidence", 1.0),
|
| 285 |
+
"bbox": getattr(node, "bbox", None),
|
| 286 |
+
})
|
| 287 |
+
return {"text_elements": text_elements}
|
| 288 |
+
|
| 289 |
+
def create_visualization(image, collection_data, visualization_type, show_confidence, highlight_low_confidence):
|
| 290 |
viz_image = image.copy()
|
| 291 |
draw = ImageDraw.Draw(viz_image)
|
| 292 |
|
|
|
|
| 295 |
except:
|
| 296 |
font = ImageFont.load_default()
|
| 297 |
|
| 298 |
+
for element in collection_data.get("text_elements", []):
|
| 299 |
+
if element.get("bbox"):
|
| 300 |
+
bbox = element["bbox"]
|
| 301 |
+
confidence = element.get("confidence", 1.0)
|
| 302 |
+
|
| 303 |
+
if visualization_type == "overlay":
|
| 304 |
+
color = (255, 165, 0) if highlight_low_confidence and confidence < 0.7 else (0, 255, 0)
|
| 305 |
+
draw.rectangle(bbox, outline=color, width=2)
|
| 306 |
+
if show_confidence:
|
| 307 |
+
draw.text((bbox[0], bbox[1] - 15), f"{confidence:.2f}", fill=color, font=font)
|
| 308 |
+
|
| 309 |
+
elif visualization_type == "confidence_heatmap":
|
| 310 |
+
if confidence < 0.5:
|
| 311 |
+
color = (255, 0, 0, 100)
|
| 312 |
+
elif confidence < 0.8:
|
| 313 |
+
color = (255, 255, 0, 100)
|
| 314 |
+
else:
|
| 315 |
+
color = (0, 255, 0, 100)
|
| 316 |
+
overlay = Image.new("RGBA", viz_image.size, (0, 0, 0, 0))
|
| 317 |
+
overlay_draw = ImageDraw.Draw(overlay)
|
| 318 |
+
overlay_draw.rectangle(bbox, fill=color)
|
| 319 |
+
viz_image = Image.alpha_composite(viz_image.convert("RGBA"), overlay)
|
| 320 |
+
|
| 321 |
+
elif visualization_type == "text_regions":
|
| 322 |
+
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0)]
|
| 323 |
+
color = colors[hash(str(bbox)) % len(colors)]
|
| 324 |
+
draw.rectangle(bbox, outline=color, width=3)
|
|
|
|
| 325 |
|
| 326 |
return viz_image.convert("RGB") if visualization_type == "confidence_heatmap" else viz_image
|
| 327 |
|
|
|
|
| 345 |
fn=visualize_results,
|
| 346 |
inputs=[
|
| 347 |
gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
|
| 348 |
+
gr.Image(type="pil", label="Image"),
|
| 349 |
gr.Dropdown(choices=["overlay", "confidence_heatmap", "text_regions"], value="overlay", label="Visualization Type"),
|
| 350 |
gr.Checkbox(value=True, label="Show Confidence Scores"),
|
| 351 |
gr.Checkbox(value=True, label="Highlight Low Confidence"),
|
|
|
|
| 352 |
],
|
| 353 |
outputs=gr.JSON(label="Visualization Results"),
|
| 354 |
title="Results Visualization Tool",
|
|
|
|
| 359 |
fn=export_results,
|
| 360 |
inputs=[
|
| 361 |
gr.Textbox(label="Processing State (JSON)", placeholder="Paste processing results from HTR tool"),
|
| 362 |
+
gr.Image(type="pil", label="Image"),
|
| 363 |
gr.CheckboxGroup(choices=["txt", "json", "alto", "page"], value=["txt"], label="Output Formats"),
|
| 364 |
gr.Slider(0.0, 1.0, value=0.0, label="Confidence Filter"),
|
| 365 |
],
|