Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -116,9 +116,9 @@ PIPELINE_CONFIGS = {
|
|
| 116 |
}
|
| 117 |
|
| 118 |
@spaces.GPU
|
| 119 |
-
def
|
| 120 |
"""
|
| 121 |
-
Process handwritten text recognition (HTR) on uploaded images and return
|
| 122 |
|
| 123 |
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
|
| 124 |
from historical documents. It supports different document types and languages, with specialized models
|
|
@@ -130,8 +130,8 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
| 130 |
|
| 131 |
document_type (Literal): The type of document and language processing template to use.
|
| 132 |
Available options:
|
| 133 |
-
- "letter_english": Single-page English handwritten letters
|
| 134 |
-
- "letter_swedish": Single-page Swedish handwritten letters
|
| 135 |
- "spread_english": Two-page spread English documents with marginalia
|
| 136 |
- "spread_swedish": Two-page spread Swedish documents with marginalia
|
| 137 |
Default: "letter_swedish"
|
|
@@ -143,20 +143,20 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
| 143 |
- "page": PAGE XML format with structural markup and positioning data
|
| 144 |
- "json": JSON format with structured text, layout information and metadata
|
| 145 |
Default: "alto"
|
| 146 |
-
Note: Both "alto" and "page" formats are XML-based with layout information.
|
| 147 |
|
| 148 |
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
|
| 149 |
-
JSON string to override the default processing steps.
|
| 150 |
-
fine-tuning of model parameters, batch sizes, and processing workflow.
|
| 151 |
Default: None (uses predefined configuration for document_type)
|
| 152 |
|
| 153 |
Returns:
|
| 154 |
-
str:
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
| 157 |
"""
|
| 158 |
if not image_path:
|
| 159 |
-
return "
|
| 160 |
|
| 161 |
try:
|
| 162 |
original_filename = Path(image_path).stem or "output"
|
|
@@ -165,7 +165,7 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
| 165 |
try:
|
| 166 |
config = json.loads(custom_settings)
|
| 167 |
except json.JSONDecodeError:
|
| 168 |
-
return "
|
| 169 |
else:
|
| 170 |
config = PIPELINE_CONFIGS[document_type]
|
| 171 |
|
|
@@ -175,7 +175,7 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
| 175 |
try:
|
| 176 |
processed_collection = pipeline.run(collection)
|
| 177 |
except Exception as pipeline_error:
|
| 178 |
-
return
|
| 179 |
|
| 180 |
temp_dir = Path(tempfile.mkdtemp())
|
| 181 |
export_dir = temp_dir / output_format
|
|
@@ -193,12 +193,40 @@ def htrflow_htr(image_path: str, document_type: Literal["letter_english", "lette
|
|
| 193 |
break
|
| 194 |
|
| 195 |
if output_file_path and os.path.exists(output_file_path):
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
else:
|
| 198 |
-
return "
|
| 199 |
|
| 200 |
except Exception as e:
|
| 201 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
def extract_text_from_collection(collection: Collection) -> str:
|
| 204 |
text_lines = []
|
|
@@ -209,19 +237,37 @@ def extract_text_from_collection(collection: Collection) -> str:
|
|
| 209 |
return "\n".join(text_lines)
|
| 210 |
|
| 211 |
def create_htrflow_mcp_server():
|
| 212 |
-
|
| 213 |
-
fn=
|
| 214 |
inputs=[
|
| 215 |
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
| 216 |
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
|
| 217 |
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
|
| 218 |
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
|
| 219 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
outputs=gr.File(label="Download Output File"),
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
api_name="htrflow_htr",
|
| 224 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
return demo
|
| 226 |
|
| 227 |
if __name__ == "__main__":
|
|
|
|
| 116 |
}
|
| 117 |
|
| 118 |
@spaces.GPU
|
| 119 |
+
def htrflow_htr_url(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_swedish", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None) -> str:
|
| 120 |
"""
|
| 121 |
+
Process handwritten text recognition (HTR) on uploaded images and return both file content and download link.
|
| 122 |
|
| 123 |
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
|
| 124 |
from historical documents. It supports different document types and languages, with specialized models
|
|
|
|
| 130 |
|
| 131 |
document_type (Literal): The type of document and language processing template to use.
|
| 132 |
Available options:
|
| 133 |
+
- "letter_english": Single-page English handwritten letters
|
| 134 |
+
- "letter_swedish": Single-page Swedish handwritten letters (default)
|
| 135 |
- "spread_english": Two-page spread English documents with marginalia
|
| 136 |
- "spread_swedish": Two-page spread Swedish documents with marginalia
|
| 137 |
Default: "letter_swedish"
|
|
|
|
| 143 |
- "page": PAGE XML format with structural markup and positioning data
|
| 144 |
- "json": JSON format with structured text, layout information and metadata
|
| 145 |
Default: "alto"
|
|
|
|
| 146 |
|
| 147 |
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
|
| 148 |
+
JSON string to override the default processing steps.
|
|
|
|
| 149 |
Default: None (uses predefined configuration for document_type)
|
| 150 |
|
| 151 |
Returns:
|
| 152 |
+
str: JSON string containing both the file content and download link:
|
| 153 |
+
{
|
| 154 |
+
"content": "file_content_here",
|
| 155 |
+
"file_path": "[file_name](http://your-server:port/gradio_api//file=/tmp/gradio/{temp_folder}/{file_name}.{file_format})"
|
| 156 |
+
}
|
| 157 |
"""
|
| 158 |
if not image_path:
|
| 159 |
+
return json.dumps({"error": "No image provided"})
|
| 160 |
|
| 161 |
try:
|
| 162 |
original_filename = Path(image_path).stem or "output"
|
|
|
|
| 165 |
try:
|
| 166 |
config = json.loads(custom_settings)
|
| 167 |
except json.JSONDecodeError:
|
| 168 |
+
return json.dumps({"error": "Invalid JSON in custom_settings parameter"})
|
| 169 |
else:
|
| 170 |
config = PIPELINE_CONFIGS[document_type]
|
| 171 |
|
|
|
|
| 175 |
try:
|
| 176 |
processed_collection = pipeline.run(collection)
|
| 177 |
except Exception as pipeline_error:
|
| 178 |
+
return json.dumps({"error": f"Pipeline execution failed: {str(pipeline_error)}"})
|
| 179 |
|
| 180 |
temp_dir = Path(tempfile.mkdtemp())
|
| 181 |
export_dir = temp_dir / output_format
|
|
|
|
| 193 |
break
|
| 194 |
|
| 195 |
if output_file_path and os.path.exists(output_file_path):
|
| 196 |
+
# Read the file content
|
| 197 |
+
try:
|
| 198 |
+
with open(output_file_path, 'r', encoding='utf-8') as f:
|
| 199 |
+
file_content = f.read()
|
| 200 |
+
except UnicodeDecodeError:
|
| 201 |
+
# If UTF-8 fails, try with different encoding or read as binary for certain formats
|
| 202 |
+
try:
|
| 203 |
+
with open(output_file_path, 'r', encoding='latin-1') as f:
|
| 204 |
+
file_content = f.read()
|
| 205 |
+
except:
|
| 206 |
+
with open(output_file_path, 'rb') as f:
|
| 207 |
+
file_content = f.read().decode('utf-8', errors='replace')
|
| 208 |
+
|
| 209 |
+
# Create the markdown link
|
| 210 |
+
file_name = Path(output_file_path).name
|
| 211 |
+
temp_folder = Path(output_file_path).parent.name
|
| 212 |
+
markdown_link = f"[{file_name}](http://your-server:port/gradio_api//file=/tmp/gradio/{temp_folder}/{file_name})"
|
| 213 |
+
|
| 214 |
+
# Return JSON with both content and file path
|
| 215 |
+
result = {
|
| 216 |
+
"content": file_content,
|
| 217 |
+
"file_path": markdown_link
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
return json.dumps(result, ensure_ascii=False, indent=2)
|
| 221 |
else:
|
| 222 |
+
return json.dumps({"error": "Failed to generate output file"})
|
| 223 |
|
| 224 |
except Exception as e:
|
| 225 |
+
return json.dumps({"error": f"HTR processing failed: {str(e)}"})
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def htrflow_visualizer(image: str, htr_document: str) -> str:
|
| 229 |
+
pass
|
| 230 |
|
| 231 |
def extract_text_from_collection(collection: Collection) -> str:
|
| 232 |
text_lines = []
|
|
|
|
| 237 |
return "\n".join(text_lines)
|
| 238 |
|
| 239 |
def create_htrflow_mcp_server():
|
| 240 |
+
htrflow_url = gr.Interface(
|
| 241 |
+
fn=htrflow_htr_url,
|
| 242 |
inputs=[
|
| 243 |
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
| 244 |
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
|
| 245 |
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"),
|
| 246 |
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""),
|
| 247 |
],
|
| 248 |
+
outputs=gr.Textbox(label="HTR Result (JSON)", lines=10),
|
| 249 |
+
description="Process handwritten text from uploaded file or URL and get both content and download link in JSON format",
|
| 250 |
+
api_name="htrflow_htr_url",
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
htrflow_viz = gr.Interface(
|
| 254 |
+
fn=htrflow_visualizer,
|
| 255 |
+
inputs=[
|
| 256 |
+
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
| 257 |
+
gr.Textbox(label="HTR Document content", placeholder="Path to the HTR document file", value=""),
|
| 258 |
+
],
|
| 259 |
outputs=gr.File(label="Download Output File"),
|
| 260 |
+
description="Visualize document",
|
| 261 |
+
api_name="htrflow_visualizer"
|
|
|
|
| 262 |
)
|
| 263 |
+
|
| 264 |
+
demo = gr.TabbedInterface(
|
| 265 |
+
[htrflow_url, htrflow_viz],
|
| 266 |
+
["HTR URL", "HTR Visualizer"],
|
| 267 |
+
title="HTRflow Handwritten Text Recognition",
|
| 268 |
+
description="Extract text and visualize handwritten historical documents using HTRflow",
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
return demo
|
| 272 |
|
| 273 |
if __name__ == "__main__":
|