Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -117,66 +117,68 @@ PIPELINE_CONFIGS = {
|
|
| 117 |
}
|
| 118 |
|
| 119 |
@spaces.GPU
|
| 120 |
-
def process_htr(image: Image.Image, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "
|
| 121 |
"""Process handwritten text recognition on uploaded images using HTRflow pipelines."""
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
return {"success": False, "error": "No image provided", "results": None}
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
processed_collection = pipeline.run(collection)
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
finally:
|
| 170 |
-
if os.path.exists(temp_image_path):
|
| 171 |
-
os.unlink(temp_image_path)
|
| 172 |
except Exception as e:
|
| 173 |
return {"success": False, "error": f"HTR processing failed: {str(e)}", "results": None}
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
def visualize_results(processing_state: str, visualization_type: Literal["overlay", "confidence_heatmap", "text_regions"] = "overlay", show_confidence: bool = True, highlight_low_confidence: bool = True, image: Optional[Image.Image] = None) -> Dict:
|
| 176 |
"""Generate interactive visualizations of HTR processing results."""
|
| 177 |
try:
|
| 178 |
state = json.loads(processing_state)
|
| 179 |
-
collection_data = state["collection_data"]
|
| 180 |
|
| 181 |
if image is not None:
|
| 182 |
original_image = image
|
|
@@ -184,22 +186,36 @@ def visualize_results(processing_state: str, visualization_type: Literal["overla
|
|
| 184 |
image_data = base64.b64decode(state["image_base64"])
|
| 185 |
original_image = Image.open(io.BytesIO(image_data))
|
| 186 |
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
-
"
|
| 195 |
-
"
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
"
|
| 199 |
-
"
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
except Exception as e:
|
| 204 |
return {"success": False, "error": f"Visualization generation failed: {str(e)}", "visualization": None}
|
| 205 |
|
|
@@ -230,9 +246,14 @@ def export_results(processing_state: str, output_formats: List[Literal["txt", "j
|
|
| 230 |
for root, _, files in os.walk(export_dir):
|
| 231 |
for file in files:
|
| 232 |
file_path = os.path.join(root, file)
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
exports[fmt] = export_files
|
| 238 |
|
|
@@ -270,19 +291,7 @@ def extract_text_results(collection: Collection, confidence_threshold: float) ->
|
|
| 270 |
results["average_confidence"] = sum(results["confidence_scores"]) / len(results["confidence_scores"]) if results["confidence_scores"] else 0
|
| 271 |
return results
|
| 272 |
|
| 273 |
-
def
|
| 274 |
-
text_elements = []
|
| 275 |
-
for page in collection.pages:
|
| 276 |
-
for node in page.traverse():
|
| 277 |
-
if hasattr(node, "text") and node.text:
|
| 278 |
-
text_elements.append({
|
| 279 |
-
"text": node.text,
|
| 280 |
-
"confidence": getattr(node, "confidence", 1.0),
|
| 281 |
-
"bbox": getattr(node, "bbox", None),
|
| 282 |
-
})
|
| 283 |
-
return {"text_elements": text_elements}
|
| 284 |
-
|
| 285 |
-
def create_visualization(image, collection_data, visualization_type, show_confidence, highlight_low_confidence):
|
| 286 |
viz_image = image.copy()
|
| 287 |
draw = ImageDraw.Draw(viz_image)
|
| 288 |
|
|
@@ -291,33 +300,34 @@ def create_visualization(image, collection_data, visualization_type, show_confid
|
|
| 291 |
except:
|
| 292 |
font = ImageFont.load_default()
|
| 293 |
|
| 294 |
-
for
|
| 295 |
-
|
| 296 |
-
bbox
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
|
|
|
| 321 |
|
| 322 |
return viz_image.convert("RGB") if visualization_type == "confidence_heatmap" else viz_image
|
| 323 |
|
|
|
|
| 117 |
}
|
| 118 |
|
| 119 |
@spaces.GPU
|
| 120 |
+
def process_htr(image: Image.Image, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_english", confidence_threshold: float = 0.8, custom_settings: Optional[str] = None) -> Dict:
|
| 121 |
"""Process handwritten text recognition on uploaded images using HTRflow pipelines."""
|
| 122 |
+
if image is None:
|
| 123 |
+
return {"success": False, "error": "No image provided", "results": None}
|
|
|
|
| 124 |
|
| 125 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
| 126 |
+
image.save(temp_file.name, "PNG")
|
| 127 |
+
temp_image_path = temp_file.name
|
| 128 |
|
| 129 |
+
try:
|
| 130 |
+
if custom_settings:
|
| 131 |
+
try:
|
| 132 |
+
config = json.loads(custom_settings)
|
| 133 |
+
except json.JSONDecodeError:
|
| 134 |
+
return {"success": False, "error": "Invalid JSON in custom_settings parameter", "results": None}
|
| 135 |
+
else:
|
| 136 |
+
config = PIPELINE_CONFIGS[document_type]
|
| 137 |
|
| 138 |
+
collection = Collection([temp_image_path])
|
| 139 |
+
pipeline = Pipeline.from_config(config)
|
| 140 |
+
|
| 141 |
+
try:
|
| 142 |
processed_collection = pipeline.run(collection)
|
| 143 |
+
except Exception as pipeline_error:
|
| 144 |
+
return {"success": False, "error": f"Pipeline execution failed: {str(pipeline_error)}", "results": None}
|
| 145 |
|
| 146 |
+
img_buffer = io.BytesIO()
|
| 147 |
+
image.save(img_buffer, format="PNG")
|
| 148 |
+
image_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
| 149 |
|
| 150 |
+
results = extract_text_results(processed_collection, confidence_threshold)
|
| 151 |
+
|
| 152 |
+
processing_state = {
|
| 153 |
+
"processed_collection": processed_collection,
|
| 154 |
+
"image_base64": image_base64,
|
| 155 |
+
"image_size": image.size,
|
| 156 |
+
"document_type": document_type,
|
| 157 |
+
"confidence_threshold": confidence_threshold,
|
| 158 |
+
"timestamp": datetime.now().isoformat(),
|
| 159 |
+
}
|
| 160 |
|
| 161 |
+
return {
|
| 162 |
+
"success": True,
|
| 163 |
+
"results": results,
|
| 164 |
+
"processing_state": json.dumps(processing_state, default=str),
|
| 165 |
+
"metadata": {
|
| 166 |
+
"total_lines": len(results.get("text_lines", [])),
|
| 167 |
+
"average_confidence": results.get("average_confidence", 0),
|
| 168 |
+
"document_type": document_type,
|
| 169 |
+
"image_dimensions": image.size,
|
| 170 |
+
},
|
| 171 |
+
}
|
|
|
|
|
|
|
|
|
|
| 172 |
except Exception as e:
|
| 173 |
return {"success": False, "error": f"HTR processing failed: {str(e)}", "results": None}
|
| 174 |
+
finally:
|
| 175 |
+
if os.path.exists(temp_image_path):
|
| 176 |
+
os.unlink(temp_image_path)
|
| 177 |
|
| 178 |
def visualize_results(processing_state: str, visualization_type: Literal["overlay", "confidence_heatmap", "text_regions"] = "overlay", show_confidence: bool = True, highlight_low_confidence: bool = True, image: Optional[Image.Image] = None) -> Dict:
|
| 179 |
"""Generate interactive visualizations of HTR processing results."""
|
| 180 |
try:
|
| 181 |
state = json.loads(processing_state)
|
|
|
|
| 182 |
|
| 183 |
if image is not None:
|
| 184 |
original_image = image
|
|
|
|
| 186 |
image_data = base64.b64decode(state["image_base64"])
|
| 187 |
original_image = Image.open(io.BytesIO(image_data))
|
| 188 |
|
| 189 |
+
# Recreate the collection from the stored image
|
| 190 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
| 191 |
+
original_image.save(temp_file.name, "PNG")
|
| 192 |
+
temp_image_path = temp_file.name
|
| 193 |
|
| 194 |
+
try:
|
| 195 |
+
collection = Collection([temp_image_path])
|
| 196 |
+
pipeline = Pipeline.from_config(PIPELINE_CONFIGS[state["document_type"]])
|
| 197 |
+
processed_collection = pipeline.run(collection)
|
| 198 |
+
|
| 199 |
+
viz_image = create_visualization(original_image, processed_collection, visualization_type, show_confidence, highlight_low_confidence)
|
| 200 |
|
| 201 |
+
img_buffer = io.BytesIO()
|
| 202 |
+
viz_image.save(img_buffer, format="PNG")
|
| 203 |
+
img_base64 = base64.b64encode(img_buffer.getvalue()).decode("utf-8")
|
| 204 |
+
|
| 205 |
+
return {
|
| 206 |
+
"success": True,
|
| 207 |
+
"visualization": {
|
| 208 |
+
"image_base64": img_base64,
|
| 209 |
+
"image_format": "PNG",
|
| 210 |
+
"visualization_type": visualization_type,
|
| 211 |
+
"dimensions": viz_image.size,
|
| 212 |
+
},
|
| 213 |
+
"metadata": {"visualization_type": visualization_type},
|
| 214 |
+
}
|
| 215 |
+
finally:
|
| 216 |
+
if os.path.exists(temp_image_path):
|
| 217 |
+
os.unlink(temp_image_path)
|
| 218 |
+
|
| 219 |
except Exception as e:
|
| 220 |
return {"success": False, "error": f"Visualization generation failed: {str(e)}", "visualization": None}
|
| 221 |
|
|
|
|
| 246 |
for root, _, files in os.walk(export_dir):
|
| 247 |
for file in files:
|
| 248 |
file_path = os.path.join(root, file)
|
| 249 |
+
try:
|
| 250 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 251 |
+
content = f.read()
|
| 252 |
+
export_files.append({"filename": file, "content": content})
|
| 253 |
+
except UnicodeDecodeError:
|
| 254 |
+
with open(file_path, 'rb') as f:
|
| 255 |
+
content = base64.b64encode(f.read()).decode('utf-8')
|
| 256 |
+
export_files.append({"filename": file, "content": content, "encoding": "base64"})
|
| 257 |
|
| 258 |
exports[fmt] = export_files
|
| 259 |
|
|
|
|
| 291 |
results["average_confidence"] = sum(results["confidence_scores"]) / len(results["confidence_scores"]) if results["confidence_scores"] else 0
|
| 292 |
return results
|
| 293 |
|
| 294 |
+
def create_visualization(image, collection, visualization_type, show_confidence, highlight_low_confidence):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
viz_image = image.copy()
|
| 296 |
draw = ImageDraw.Draw(viz_image)
|
| 297 |
|
|
|
|
| 300 |
except:
|
| 301 |
font = ImageFont.load_default()
|
| 302 |
|
| 303 |
+
for page in collection.pages:
|
| 304 |
+
for node in page.traverse():
|
| 305 |
+
if hasattr(node, "bbox") and hasattr(node, "text") and node.bbox and node.text:
|
| 306 |
+
bbox = node.bbox
|
| 307 |
+
confidence = getattr(node, "confidence", 1.0)
|
| 308 |
+
|
| 309 |
+
if visualization_type == "overlay":
|
| 310 |
+
color = (255, 165, 0) if highlight_low_confidence and confidence < 0.7 else (0, 255, 0)
|
| 311 |
+
draw.rectangle(bbox, outline=color, width=2)
|
| 312 |
+
if show_confidence:
|
| 313 |
+
draw.text((bbox[0], bbox[1] - 15), f"{confidence:.2f}", fill=color, font=font)
|
| 314 |
+
|
| 315 |
+
elif visualization_type == "confidence_heatmap":
|
| 316 |
+
if confidence < 0.5:
|
| 317 |
+
color = (255, 0, 0, 100)
|
| 318 |
+
elif confidence < 0.8:
|
| 319 |
+
color = (255, 255, 0, 100)
|
| 320 |
+
else:
|
| 321 |
+
color = (0, 255, 0, 100)
|
| 322 |
+
overlay = Image.new("RGBA", viz_image.size, (0, 0, 0, 0))
|
| 323 |
+
overlay_draw = ImageDraw.Draw(overlay)
|
| 324 |
+
overlay_draw.rectangle(bbox, fill=color)
|
| 325 |
+
viz_image = Image.alpha_composite(viz_image.convert("RGBA"), overlay)
|
| 326 |
+
|
| 327 |
+
elif visualization_type == "text_regions":
|
| 328 |
+
colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0)]
|
| 329 |
+
color = colors[hash(str(bbox)) % len(colors)]
|
| 330 |
+
draw.rectangle(bbox, outline=color, width=3)
|
| 331 |
|
| 332 |
return viz_image.convert("RGB") if visualization_type == "confidence_heatmap" else viz_image
|
| 333 |
|