Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,40 @@
|
|
| 1 |
import torch
|
| 2 |
-
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
-
import scipy.io.wavfile
|
| 5 |
|
| 6 |
-
|
| 7 |
-
processor = AutoProcessor.from_pretrained("nvidia/parakeet-tdt-0.6b-v2")
|
| 8 |
-
model = AutoModelForTextToWaveform.from_pretrained("nvidia/parakeet-tdt-0.6b-v2").to("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
|
| 10 |
-
|
| 11 |
-
speakers = ["emma", "ryan", "brian", "karen", "amy", "john"]
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
# สร้าง Gradio Interface
|
| 21 |
gr.Interface(
|
| 22 |
-
fn=
|
| 23 |
inputs=[
|
| 24 |
-
gr.
|
| 25 |
-
gr.Dropdown(choices=speakers, label="Select speaker")
|
| 26 |
-
],
|
| 27 |
-
outputs=gr.Audio(label="Generated Speech"),
|
| 28 |
-
title="🗣️ NVIDIA Parakeet TTS Demo",
|
| 29 |
-
description="Text-to-Speech using NVIDIA Parakeet-TDT-0.6B-v2 model"
|
| 30 |
-
).launch()
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torchaudio
|
| 3 |
+
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
+
model_name = "ibm-granite/granite-speech-3.3-8b"
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 9 |
|
| 10 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name).to(device)
|
| 12 |
+
|
| 13 |
+
def transcribe(audio, translate_to=None):
|
| 14 |
+
# audio: (sampling rate, numpy array) from Gradio
|
| 15 |
+
sr, audio_data = audio
|
| 16 |
+
waveform = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, seq)
|
| 17 |
+
# Resample if not 16kHz
|
| 18 |
+
if sr != 16000:
|
| 19 |
+
waveform = torchaudio.functional.resample(waveform, sr, 16000)
|
| 20 |
+
|
| 21 |
+
inputs = processor(waveform, sampling_rate=16000, return_tensors="pt").to(device)
|
| 22 |
+
# Set beam size >1 แนะนำ beam=5
|
| 23 |
+
outputs = model.generate(**inputs, num_beams=5, max_new_tokens=512)
|
| 24 |
+
text = processor.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 25 |
+
|
| 26 |
+
# ถ้ามี translate_to, เติม prompt: e.g. "<|translate_to=es|>"
|
| 27 |
+
if translate_to:
|
| 28 |
+
text = f"<|translate_to={translate_to}|> " + text
|
| 29 |
+
inputs2 = processor(text, return_tensors="pt").to(device)
|
| 30 |
+
outputs2 = model.generate(**inputs2, num_beams=5)
|
| 31 |
+
text = processor.tokenizer.batch_decode(outputs2, skip_special_tokens=True)[0]
|
| 32 |
+
|
| 33 |
+
return text
|
| 34 |
+
|
| 35 |
+
translator_options = [None, "fr", "es", "it", "de", "pt", "ja", "zh"]
|
| 36 |
|
|
|
|
| 37 |
gr.Interface(
|
| 38 |
+
fn=transcribe,
|
| 39 |
inputs=[
|
| 40 |
+
gr.Audio(source="microphone", type="numpy", label="Upload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|