YucYux
commited on
Commit
·
9c9354f
1
Parent(s):
ca6c4d6
tried to fix bug
Browse files
app.py
CHANGED
|
@@ -10,7 +10,6 @@ from PIL import Image
|
|
| 10 |
import spaces
|
| 11 |
|
| 12 |
|
| 13 |
-
# --- 辅助函数 (未修改) ---
|
| 14 |
def image_transform(image, resolution=256, normalize=True):
|
| 15 |
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
|
| 16 |
image = transforms.CenterCrop((resolution, resolution))(image)
|
|
@@ -20,84 +19,133 @@ def image_transform(image, resolution=256, normalize=True):
|
|
| 20 |
return image
|
| 21 |
|
| 22 |
def add_gumbel_noise(logits, temperature):
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
return logits
|
|
|
|
| 25 |
logits = logits.to(torch.float64)
|
|
|
|
|
|
|
| 26 |
noise = torch.rand_like(logits, dtype=torch.float64)
|
| 27 |
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20)
|
| 28 |
return logits + temperature * standard_gumbel_noise
|
| 29 |
|
| 30 |
def get_num_transfer_tokens(mask_index, steps):
|
| 31 |
mask_num = mask_index.sum(dim=1, keepdim=True)
|
| 32 |
-
steps
|
|
|
|
| 33 |
base = mask_num // steps
|
| 34 |
remainder = mask_num % steps
|
| 35 |
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base
|
| 36 |
-
for i in range(mask_num.size(0)):
|
| 37 |
-
if remainder[i] > 0 :
|
| 38 |
-
|
| 39 |
return num_transfer_tokens
|
| 40 |
|
| 41 |
-
# --- 全局变量和模型配置 ---
|
| 42 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
TOKENIZER =
|
| 48 |
-
|
| 49 |
-
|
|
|
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
# --- 核心模型加载函数 (已简化) ---
|
| 53 |
@spaces.GPU
|
| 54 |
-
def
|
| 55 |
-
|
| 56 |
-
加载固定的 MMaDA-8B-MixCoT 模型和分词器。
|
| 57 |
-
"""
|
| 58 |
-
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
return f"Model 'MMaDA-8B-MixCoT' is already loaded. MASK_ID: {MASK_ID}"
|
| 63 |
|
| 64 |
-
|
| 65 |
-
try:
|
| 66 |
-
TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True)
|
| 67 |
-
status_msg_parts.append(f"Tokenizer for 'MMaDA-8B-MixCoT' loaded.")
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
MASK_ID = 126336
|
| 75 |
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.")
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
# --- 可视化和生成函数 (generate_viz_wrapper* 系列,已修复全局变量问题) ---
|
| 91 |
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask):
|
| 92 |
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0:
|
| 93 |
return [("Error in sequence data for visualization.", "ERROR")]
|
|
|
|
| 94 |
current_x_ids_batch = current_x_ids_batch[:, prompt_len:]
|
| 95 |
seq_ids = current_x_ids_batch[0].tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
intermediate_tuples = []
|
| 97 |
for j, token_id_int in enumerate(seq_ids):
|
| 98 |
try:
|
| 99 |
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 100 |
-
except Exception:
|
| 101 |
token_str = f"[ID:{token_id_int}]"
|
| 102 |
|
| 103 |
label = "ERROR"
|
|
@@ -107,202 +155,452 @@ def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_le
|
|
| 107 |
else:
|
| 108 |
label = "GEN"
|
| 109 |
intermediate_tuples.append((token_str, label, token_id_int))
|
|
|
|
| 110 |
return intermediate_tuples
|
| 111 |
|
| 112 |
@torch.no_grad()
|
| 113 |
@spaces.GPU
|
| 114 |
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"):
|
| 115 |
-
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting
|
|
|
|
| 116 |
if MODEL is None or TOKENIZER is None or MASK_ID is None:
|
| 117 |
-
yield
|
| 118 |
return
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
VQ_MODEL
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
@torch.no_grad()
|
| 149 |
@spaces.GPU
|
| 150 |
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature,
|
| 151 |
-
|
| 152 |
global MODEL, TOKENIZER, MASK_ID, DEVICE
|
| 153 |
if MODEL is None or TOKENIZER is None or MASK_ID is None:
|
| 154 |
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
|
| 155 |
return
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
try:
|
| 159 |
-
# ... (函数实现和之前一样)
|
| 160 |
-
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length)
|
| 161 |
-
if thinking_mode_lm:
|
| 162 |
-
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
|
| 163 |
m = [{"role": "user", "content": prompt_text}]
|
| 164 |
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
logits = model_output.logits
|
| 184 |
-
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
|
| 185 |
-
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
|
| 186 |
-
probs = F.softmax(logits.to(torch.float64), dim=-1)
|
| 187 |
-
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
|
| 188 |
-
confidence_for_selection = torch.where(mask_index_global & block_masks_bool_current, x0_probs, -torch.inf)
|
| 189 |
-
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
|
| 190 |
-
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
|
| 191 |
-
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
|
| 192 |
-
for j_batch_idx in range(batch_size):
|
| 193 |
-
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(), candidate_positions_for_unmasking[j_batch_idx].sum().item())
|
| 194 |
-
if k_val > 0:
|
| 195 |
-
_, topk_indices_in_x = torch.topk(confidence_for_selection[j_batch_idx], k=k_val)
|
| 196 |
-
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
|
| 197 |
-
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
|
| 198 |
-
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block}"
|
| 199 |
-
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
|
| 200 |
-
final_text_output = TOKENIZER.batch_decode(x[:, prompt_len:], skip_special_tokens=True)
|
| 201 |
-
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0]
|
| 202 |
-
finally:
|
| 203 |
-
if DEVICE == 'cuda':
|
| 204 |
-
MODEL.to('cpu')
|
| 205 |
-
torch.cuda.empty_cache()
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
@torch.no_grad()
|
| 209 |
@spaces.GPU
|
| 210 |
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature,
|
| 211 |
cfg_scale, remasking_strategy, thinking_mode_mmu=False):
|
| 212 |
-
global MODEL, TOKENIZER, MASK_ID, DEVICE
|
|
|
|
| 213 |
if MODEL is None or TOKENIZER is None or MASK_ID is None:
|
| 214 |
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
|
| 215 |
return
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
try:
|
| 220 |
-
# ... (函数实现和之前一样)
|
| 221 |
-
steps, gen_length, block_length = int(steps), int(gen_length), int(block_length)
|
| 222 |
-
if thinking_mode_mmu:
|
| 223 |
-
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
|
| 224 |
m = [{"role": "user", "content": prompt_text}]
|
| 225 |
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
if image_vq_ids_tensor is not None:
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask),
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
css_styles = """
|
| 278 |
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;}
|
| 279 |
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;}
|
| 280 |
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;}
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
footer{display:none !important}
|
| 283 |
-
|
| 284 |
-
#
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
"""
|
| 291 |
|
| 292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
new_state = not current_thinking_mode
|
| 294 |
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
|
| 295 |
return new_state, gr.update(value=new_label)
|
| 296 |
|
| 297 |
-
color_map_config = {"MASK": "lightgrey", "GEN": "#DCABFA"}
|
| 298 |
|
| 299 |
-
|
|
|
|
|
|
|
|
|
|
| 300 |
|
|
|
|
|
|
|
|
|
|
| 301 |
with gr.Blocks(css=css_styles, theme=theme) as demo:
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
gr.HTML("""
|
| 307 |
<div align="center" style="margin-bottom: 20px;">
|
| 308 |
<img src='/gradio_api/file=title.png' width="160">
|
|
@@ -310,51 +608,60 @@ with gr.Blocks(css=css_styles, theme=theme) as demo:
|
|
| 310 |
MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation.
|
| 311 |
</p>
|
| 312 |
<p style="font-size: 15px;">
|
| 313 |
-
📄 <a href="https://arxiv.org/abs/
|
|
|
|
|
|
|
| 314 |
</p>
|
| 315 |
</div>
|
| 316 |
""")
|
| 317 |
-
|
| 318 |
with gr.Row():
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
<
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
</
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
model_load_status_box = gr.Textbox(
|
| 330 |
-
label="Model Load Status", interactive=False, lines=3, max_lines=5
|
| 331 |
-
)
|
| 332 |
|
| 333 |
-
# --- Part 1. 文本生成 ---
|
| 334 |
gr.Markdown("## Part 1. Text Generation")
|
| 335 |
with gr.Row():
|
| 336 |
with gr.Column(scale=2):
|
| 337 |
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?")
|
| 338 |
think_button_lm = gr.Button("Thinking Mode ✅", elem_id="think_btn")
|
| 339 |
with gr.Accordion("Generation Parameters", open=True):
|
| 340 |
-
# ... 参数滑块 (未修改)
|
| 341 |
with gr.Row():
|
| 342 |
-
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length")
|
| 343 |
-
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps")
|
| 344 |
with gr.Row():
|
| 345 |
-
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length")
|
| 346 |
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
|
| 347 |
with gr.Row():
|
| 348 |
-
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale")
|
| 349 |
-
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature")
|
|
|
|
|
|
|
| 350 |
with gr.Row():
|
| 351 |
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3)
|
| 352 |
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1)
|
|
|
|
| 353 |
with gr.Column(scale=3):
|
| 354 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
|
| 356 |
-
|
| 357 |
-
|
|
|
|
| 358 |
gr.Examples(
|
| 359 |
examples=[
|
| 360 |
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"],
|
|
@@ -365,64 +672,98 @@ with gr.Blocks(css=css_styles, theme=theme) as demo:
|
|
| 365 |
fn=generate_viz_wrapper_lm,
|
| 366 |
cache_examples=False
|
| 367 |
)
|
| 368 |
-
|
| 369 |
-
# --- Part 2 & 3 和事件处理器 (结构类似,已做简化) ---
|
| 370 |
gr.Markdown("---")
|
| 371 |
gr.Markdown("## Part 2. Multimodal Understanding")
|
| 372 |
with gr.Row():
|
| 373 |
-
# ... (Part 2 UI 结构未变)
|
| 374 |
with gr.Column(scale=2):
|
| 375 |
-
prompt_input_box_mmu = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
think_button_mmu = gr.Button("Thinking Mode ✅", elem_id="think_btn")
|
| 377 |
with gr.Accordion("Generation Parameters", open=True):
|
| 378 |
-
|
| 379 |
-
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length")
|
| 380 |
-
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps")
|
| 381 |
-
|
| 382 |
-
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=
|
| 383 |
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
|
| 384 |
-
|
| 385 |
-
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale")
|
| 386 |
-
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature")
|
|
|
|
| 387 |
with gr.Row():
|
| 388 |
image_upload_box = gr.Image(type="pil", label="Upload Image")
|
|
|
|
| 389 |
with gr.Row():
|
| 390 |
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3)
|
| 391 |
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1)
|
|
|
|
| 392 |
with gr.Column(scale=3):
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
|
| 395 |
-
|
| 396 |
-
|
| 397 |
gr.Examples(
|
| 398 |
examples=[
|
| 399 |
["figs/geo.png", "In the given figure, a square ABCD is inscribed in a circle with center O. Point P is located on side CD. What is the value of angle APB?", 256, 512, 64, 1, 0, "low_confidence"],
|
| 400 |
["figs/bus.jpg", "What are the colors of the bus?", 256, 512, 64, 1, 0, "low_confidence"]
|
| 401 |
],
|
| 402 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
outputs=[output_visualization_box_mmu, output_final_text_box_mmu],
|
| 404 |
fn=generate_viz_wrapper,
|
| 405 |
cache_examples=False
|
| 406 |
)
|
| 407 |
-
|
| 408 |
gr.Markdown("---")
|
| 409 |
gr.Markdown("## Part 3. Text-to-Image Generation")
|
| 410 |
-
# ... (Part 3 UI 和示例未变)
|
| 411 |
with gr.Row():
|
| 412 |
with gr.Column(scale=2):
|
| 413 |
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.")
|
|
|
|
| 414 |
with gr.Accordion("Generation Parameters", open=True):
|
| 415 |
with gr.Row():
|
| 416 |
-
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps")
|
| 417 |
-
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale")
|
| 418 |
-
|
| 419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
with gr.Row():
|
| 421 |
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3)
|
| 422 |
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1)
|
|
|
|
|
|
|
| 423 |
with gr.Column(scale=3):
|
|
|
|
| 424 |
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil")
|
| 425 |
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False)
|
|
|
|
| 426 |
gr.Examples(
|
| 427 |
examples=[
|
| 428 |
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"],
|
|
@@ -433,45 +774,92 @@ with gr.Blocks(css=css_styles, theme=theme) as demo:
|
|
| 433 |
fn=generate_viz_wrapper_t2i,
|
| 434 |
cache_examples=False
|
| 435 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
|
| 448 |
-
|
| 449 |
-
fn=
|
| 450 |
inputs=None,
|
| 451 |
-
outputs=[
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
],
|
| 458 |
-
|
| 459 |
)
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
|
|
|
|
|
|
|
|
|
| 474 |
|
| 475 |
if __name__ == "__main__":
|
| 476 |
print(f"Starting Gradio App. Attempting to use device: {DEVICE}")
|
| 477 |
-
demo.launch(allowed_paths=["title.png"
|
|
|
|
| 10 |
import spaces
|
| 11 |
|
| 12 |
|
|
|
|
| 13 |
def image_transform(image, resolution=256, normalize=True):
|
| 14 |
image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BICUBIC)(image)
|
| 15 |
image = transforms.CenterCrop((resolution, resolution))(image)
|
|
|
|
| 19 |
return image
|
| 20 |
|
| 21 |
def add_gumbel_noise(logits, temperature):
|
| 22 |
+
"""
|
| 23 |
+
Adds Gumbel noise to logits for stochastic sampling.
|
| 24 |
+
Equivalent to argmax(logits + temperature * G) where G ~ Gumbel(0,1).
|
| 25 |
+
This version is more numerically stable than a version involving exp() and division.
|
| 26 |
+
"""
|
| 27 |
+
if abs(temperature) < 1e-9: # Effectively zero temperature
|
| 28 |
return logits
|
| 29 |
+
# Ensure logits are float64 for precision with noise, as suggested by user context
|
| 30 |
logits = logits.to(torch.float64)
|
| 31 |
+
# Standard Gumbel noise: -log(-log(U)), U ~ Uniform(0,1)
|
| 32 |
+
# Add small epsilon for numerical stability inside logs
|
| 33 |
noise = torch.rand_like(logits, dtype=torch.float64)
|
| 34 |
standard_gumbel_noise = -torch.log(-torch.log(noise + 1e-20) + 1e-20)
|
| 35 |
return logits + temperature * standard_gumbel_noise
|
| 36 |
|
| 37 |
def get_num_transfer_tokens(mask_index, steps):
|
| 38 |
mask_num = mask_index.sum(dim=1, keepdim=True)
|
| 39 |
+
# Ensure steps is at least 1 to avoid division by zero if mask_num is also 0 (though sum should be >=0)
|
| 40 |
+
steps = max(1, int(steps)) # Ensure steps is a positive integer
|
| 41 |
base = mask_num // steps
|
| 42 |
remainder = mask_num % steps
|
| 43 |
num_transfer_tokens = torch.zeros(mask_num.size(0), steps, device=mask_index.device, dtype=torch.long) + base
|
| 44 |
+
for i in range(mask_num.size(0)): # Iterate over batch
|
| 45 |
+
if remainder[i] > 0 : # Ensure remainder is positive before indexing
|
| 46 |
+
num_transfer_tokens[i, :remainder[i].item()] += 1 # .item() for single value tensor to int
|
| 47 |
return num_transfer_tokens
|
| 48 |
|
|
|
|
| 49 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 50 |
+
DEFAULT_MODEL_PATH = "Gen-Verse/MMaDA-8B-MixCoT" # Default
|
| 51 |
+
MASK_ID = 126336
|
| 52 |
+
MODEL = MMadaModelLM.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval()
|
| 53 |
+
TOKENIZER = AutoTokenizer.from_pretrained(DEFAULT_MODEL_PATH, trust_remote_code=True)
|
| 54 |
+
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True)
|
| 55 |
+
VQ_MODEL = MAGVITv2().from_pretrained("showlab/magvitv2").to(DEVICE)
|
| 56 |
+
|
| 57 |
+
CURRENT_MODEL_PATH = None
|
| 58 |
|
| 59 |
+
MODEL_CHOICES = [
|
| 60 |
+
"MMaDA-8B-Base",
|
| 61 |
+
"MMaDA-8B-MixCoT (coming soon)",
|
| 62 |
+
"MMaDA-8B-Max (coming soon)"
|
| 63 |
+
]
|
| 64 |
+
MODEL_ACTUAL_PATHS = {
|
| 65 |
+
"MMaDA-8B-Base": DEFAULT_MODEL_PATH,
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
def clear_outputs_action():
|
| 69 |
+
return None, None
|
| 70 |
|
|
|
|
| 71 |
@spaces.GPU
|
| 72 |
+
def _load_model_and_tokenizer_core(model_path_to_load, model_display_name_for_status):
|
| 73 |
+
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH, DEVICE, uni_prompting
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
if MODEL is not None and CURRENT_MODEL_PATH == model_path_to_load:
|
| 76 |
+
return f"Model '{model_display_name_for_status}' from '{model_path_to_load}' is already loaded. MASK_ID: {MASK_ID}"
|
|
|
|
| 77 |
|
| 78 |
+
CURRENT_MODEL_PATH = model_path_to_load
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
status_msg_parts = [f"Loading '{model_display_name_for_status}'..."]
|
| 81 |
+
# try:
|
| 82 |
+
TOKENIZER = AutoTokenizer.from_pretrained(model_path_to_load, trust_remote_code=True)
|
| 83 |
+
status_msg_parts.append(f"Tokenizer for '{model_display_name_for_status}' loaded.")
|
| 84 |
|
| 85 |
+
MODEL = MMadaModelLM.from_pretrained(model_path_to_load, trust_remote_code=True, torch_dtype=torch.bfloat16).to(DEVICE).eval()
|
| 86 |
+
status_msg_parts.append(f"Model '{model_display_name_for_status}' loaded to {DEVICE}.")
|
| 87 |
+
|
| 88 |
+
uni_prompting = UniversalPrompting(TOKENIZER, max_text_len=512, special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),ignore_id=-100, cond_dropout_prob=0.1, use_reserved_token=True)
|
| 89 |
+
|
| 90 |
+
if hasattr(TOKENIZER, 'mask_token_id') and TOKENIZER.mask_token_id is not None:
|
| 91 |
+
MASK_ID = TOKENIZER.mask_token_id
|
| 92 |
+
status_msg_parts.append(f"Using MASK_ID from tokenizer: {MASK_ID}.")
|
| 93 |
+
else:
|
| 94 |
MASK_ID = 126336
|
| 95 |
status_msg_parts.append(f"Using default MASK_ID: {MASK_ID}.")
|
| 96 |
|
| 97 |
+
if TOKENIZER.pad_token_id is None:
|
| 98 |
+
if TOKENIZER.eos_token_id is not None:
|
| 99 |
+
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
|
| 100 |
+
TOKENIZER.pad_token = TOKENIZER.eos_token
|
| 101 |
+
status_msg_parts.append(f"Set pad_token_id to eos_token_id ({TOKENIZER.eos_token_id}).")
|
| 102 |
+
else:
|
| 103 |
+
status_msg_parts.append("Warning: pad_token_id is None and no eos_token_id.")
|
| 104 |
+
|
| 105 |
+
if TOKENIZER.eos_token_id is None: # Important for cleaning up output in visualization
|
| 106 |
+
status_msg_parts.append("Warning: tokenizer.eos_token_id is None. EOS cleanup might not work.")
|
| 107 |
+
|
| 108 |
+
TOKENIZER.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n' }}"
|
| 109 |
+
|
| 110 |
+
return " ".join(status_msg_parts)
|
| 111 |
+
# except Exception as e:
|
| 112 |
+
# MODEL = None
|
| 113 |
+
# TOKENIZER = None
|
| 114 |
+
# MASK_ID = None
|
| 115 |
+
# CURRENT_MODEL_PATH = None
|
| 116 |
+
# return f"Error loading model '{model_display_name_for_status}': {str(e)}"
|
| 117 |
+
|
| 118 |
+
def handle_model_selection_change(selected_model_name_ui):
|
| 119 |
+
if "coming soon" in selected_model_name_ui.lower():
|
| 120 |
+
global MODEL, TOKENIZER, MASK_ID, CURRENT_MODEL_PATH
|
| 121 |
+
MODEL = None
|
| 122 |
+
TOKENIZER = None
|
| 123 |
+
MASK_ID = None
|
| 124 |
+
CURRENT_MODEL_PATH = None
|
| 125 |
+
return f"'{selected_model_name_ui}' is not yet available. Please select 'Model A'."
|
| 126 |
+
|
| 127 |
+
actual_path = MODEL_ACTUAL_PATHS.get(selected_model_name_ui)
|
| 128 |
+
if not actual_path:
|
| 129 |
+
return f"Path for '{selected_model_name_ui}' is not defined. Cannot load."
|
| 130 |
+
|
| 131 |
+
return _load_model_and_tokenizer_core(actual_path, selected_model_name_ui)
|
| 132 |
+
|
| 133 |
|
|
|
|
| 134 |
def get_highlighted_text_tuples(current_x_ids_batch, prompt_input_ids, prompt_len, tk, current_mask_id, raw_prompt_attention_mask):
|
| 135 |
if current_x_ids_batch is None or current_x_ids_batch.ndim == 0 or current_x_ids_batch.shape[0] == 0:
|
| 136 |
return [("Error in sequence data for visualization.", "ERROR")]
|
| 137 |
+
# only answer part
|
| 138 |
current_x_ids_batch = current_x_ids_batch[:, prompt_len:]
|
| 139 |
seq_ids = current_x_ids_batch[0].tolist()
|
| 140 |
+
eos_token_id = tk.eos_token_id # Get EOS token ID
|
| 141 |
+
|
| 142 |
+
# Stage 1: Build initial list of tuples with (token_str, label, token_id_int)
|
| 143 |
+
# This helps in identifying EOS tokens later without re-checking the type.
|
| 144 |
intermediate_tuples = []
|
| 145 |
for j, token_id_int in enumerate(seq_ids):
|
| 146 |
try:
|
| 147 |
token_str = tk.decode([token_id_int], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
| 148 |
+
except Exception: # Handle cases where a token ID might be problematic (e.g. with mock)
|
| 149 |
token_str = f"[ID:{token_id_int}]"
|
| 150 |
|
| 151 |
label = "ERROR"
|
|
|
|
| 155 |
else:
|
| 156 |
label = "GEN"
|
| 157 |
intermediate_tuples.append((token_str, label, token_id_int))
|
| 158 |
+
|
| 159 |
return intermediate_tuples
|
| 160 |
|
| 161 |
@torch.no_grad()
|
| 162 |
@spaces.GPU
|
| 163 |
def generate_viz_wrapper_t2i(prompt_text, steps, guidance_scale, mask_schedule="cosine"):
|
| 164 |
+
global MODEL, TOKENIZER, MASK_ID, DEVICE, uni_prompting
|
| 165 |
+
|
| 166 |
if MODEL is None or TOKENIZER is None or MASK_ID is None:
|
| 167 |
+
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
|
| 168 |
return
|
| 169 |
+
steps = int(steps)
|
| 170 |
+
guidance_scale = float(guidance_scale)
|
| 171 |
+
|
| 172 |
+
image_tokens = torch.ones((1, 1024), dtype=torch.long, device=DEVICE) * MASK_ID
|
| 173 |
+
prompt_text = [prompt_text]
|
| 174 |
+
input_ids, attention_mask = uni_prompting((prompt_text, image_tokens), 't2i_gen')
|
| 175 |
+
|
| 176 |
+
if guidance_scale > 0:
|
| 177 |
+
uncond_input_ids, uncond_attention_mask = uni_prompting(([''], image_tokens), 't2i_gen')
|
| 178 |
+
else:
|
| 179 |
+
uncond_input_ids, uncond_attention_mask = None, None
|
| 180 |
+
|
| 181 |
+
mask_schedule = get_mask_schedule(mask_schedule)
|
| 182 |
+
blank_image = Image.new("RGB", (512, 512), (255, 255, 255))
|
| 183 |
+
yield blank_image, "Starting generation..."
|
| 184 |
+
for image_step, status_msg_step in MODEL.t2i_generate_decoding_stepwise(
|
| 185 |
+
input_ids = input_ids,
|
| 186 |
+
uncond_input_ids = uncond_input_ids,
|
| 187 |
+
attention_mask = attention_mask,
|
| 188 |
+
uncond_attention_mask = uncond_attention_mask,
|
| 189 |
+
temperature=1.0,
|
| 190 |
+
timesteps = steps,
|
| 191 |
+
guidance_scale = guidance_scale,
|
| 192 |
+
noise_schedule = mask_schedule,
|
| 193 |
+
noise_type = "mask",
|
| 194 |
+
seq_len = 1024,
|
| 195 |
+
vq_model = VQ_MODEL,
|
| 196 |
+
uni_prompting=uni_prompting):
|
| 197 |
+
yield image_step, status_msg_step
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
|
| 202 |
@torch.no_grad()
|
| 203 |
@spaces.GPU
|
| 204 |
def generate_viz_wrapper_lm(prompt_text, steps, gen_length, block_length, temperature,
|
| 205 |
+
cfg_scale, remasking_strategy, thinking_mode_lm=False):
|
| 206 |
global MODEL, TOKENIZER, MASK_ID, DEVICE
|
| 207 |
if MODEL is None or TOKENIZER is None or MASK_ID is None:
|
| 208 |
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
|
| 209 |
return
|
| 210 |
+
|
| 211 |
+
steps = int(steps)
|
| 212 |
+
gen_length = int(gen_length)
|
| 213 |
+
block_length = int(block_length)
|
| 214 |
+
|
| 215 |
+
if thinking_mode_lm:
|
| 216 |
+
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
|
| 217 |
+
|
| 218 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
m = [{"role": "user", "content": prompt_text}]
|
| 220 |
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
|
| 221 |
+
except Exception as e:
|
| 222 |
+
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}"
|
| 223 |
+
processed_prompt_text = prompt_text
|
| 224 |
+
try:
|
| 225 |
+
if TOKENIZER.pad_token_id is None:
|
| 226 |
+
if TOKENIZER.eos_token_id is not None:
|
| 227 |
+
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
|
| 228 |
+
else: # Should have been caught by load_model, but double check
|
| 229 |
+
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer."
|
| 230 |
+
return
|
| 231 |
+
|
| 232 |
+
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE)
|
| 233 |
+
raw_prompt_attention_mask = None
|
| 234 |
+
|
| 235 |
+
except Exception as e:
|
| 236 |
+
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}"
|
| 237 |
+
return
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
batch_size = input_ids.shape[0]
|
| 242 |
+
prompt_len = input_ids.shape[1]
|
| 243 |
+
|
| 244 |
+
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
|
| 245 |
+
x[:, :prompt_len] = input_ids.clone()
|
| 246 |
+
|
| 247 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks"
|
| 248 |
+
|
| 249 |
+
if gen_length == 0:
|
| 250 |
+
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True)
|
| 251 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else ""
|
| 252 |
+
return
|
| 253 |
+
|
| 254 |
+
if block_length <= 0 or gen_length % block_length != 0 :
|
| 255 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
|
| 256 |
+
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0."
|
| 257 |
+
return
|
| 258 |
+
num_blocks = gen_length // block_length
|
| 259 |
+
|
| 260 |
+
if steps <=0 or steps % num_blocks != 0:
|
| 261 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
|
| 262 |
+
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}"
|
| 263 |
+
return
|
| 264 |
+
steps_per_block = steps // num_blocks
|
| 265 |
+
|
| 266 |
+
for num_block_iter in range(num_blocks):
|
| 267 |
+
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
|
| 268 |
+
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
|
| 269 |
+
|
| 270 |
+
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
|
| 271 |
+
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \
|
| 272 |
+
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
|
| 273 |
+
|
| 274 |
+
num_transfer_tokens_for_this_block = get_num_transfer_tokens(
|
| 275 |
+
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x],
|
| 276 |
+
steps_per_block
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
for i_step_in_block in range(steps_per_block):
|
| 280 |
+
mask_index_global = (x == MASK_ID)
|
| 281 |
+
|
| 282 |
+
if cfg_scale > 0.:
|
| 283 |
+
un_x = x.clone()
|
| 284 |
+
# For unconditional pass, mask out the original prompt tokens that are not padding
|
| 285 |
+
# raw_prompt_attention_mask is (B, prompt_len)
|
| 286 |
+
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are
|
| 287 |
+
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID
|
| 288 |
+
|
| 289 |
+
x_cfg_input = torch.cat([x, un_x], dim=0)
|
| 290 |
+
# Pass attention_mask for CFG if model expects it, covering both parts
|
| 291 |
+
# For simplicity, not passing explicit attention_mask here; relies on model's internal handling.
|
| 292 |
+
model_output = MODEL(x_cfg_input)
|
| 293 |
+
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0)
|
| 294 |
+
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond)
|
| 295 |
+
else:
|
| 296 |
+
# Not passing explicit attention_mask here; relies on model's internal handling.
|
| 297 |
+
model_output = MODEL(x)
|
| 298 |
logits = model_output.logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
+
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
|
| 301 |
+
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
|
| 302 |
+
|
| 303 |
+
if remasking_strategy == 'low_confidence':
|
| 304 |
+
probs = F.softmax(logits.to(torch.float64), dim=-1)
|
| 305 |
+
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
|
| 306 |
+
elif remasking_strategy == 'random':
|
| 307 |
+
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64)
|
| 308 |
+
else:
|
| 309 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'"
|
| 310 |
+
return
|
| 311 |
+
|
| 312 |
+
confidence_for_selection = torch.full_like(x0_probs, -torch.inf)
|
| 313 |
+
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current
|
| 314 |
+
confidence_for_selection = torch.where(
|
| 315 |
+
candidate_positions_for_unmasking,
|
| 316 |
+
x0_probs,
|
| 317 |
+
-torch.inf
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
|
| 321 |
+
|
| 322 |
+
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
|
| 323 |
+
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
|
| 324 |
+
|
| 325 |
+
for j_batch_idx in range(batch_size):
|
| 326 |
+
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(),
|
| 327 |
+
candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large
|
| 328 |
+
|
| 329 |
+
if k_val > 0:
|
| 330 |
+
# Ensure confidence_for_selection[j_batch_idx] is 1D for topk
|
| 331 |
+
conf_slice = confidence_for_selection[j_batch_idx]
|
| 332 |
+
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs
|
| 333 |
+
|
| 334 |
+
# Check if there are enough valid (non -inf) confidences
|
| 335 |
+
valid_conf_count = (conf_slice > -torch.inf).sum().item()
|
| 336 |
+
actual_k = min(k_val, valid_conf_count)
|
| 337 |
+
|
| 338 |
+
if actual_k > 0:
|
| 339 |
+
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k)
|
| 340 |
+
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
|
| 341 |
+
|
| 342 |
+
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
|
| 343 |
+
|
| 344 |
+
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1
|
| 345 |
+
total_overall_steps = num_blocks * steps_per_block
|
| 346 |
+
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})"
|
| 347 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
|
| 348 |
+
|
| 349 |
+
final_generated_ids = x[:, prompt_len:]
|
| 350 |
+
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True)
|
| 351 |
+
|
| 352 |
+
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else ""
|
| 353 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str
|
| 354 |
|
| 355 |
@torch.no_grad()
|
| 356 |
@spaces.GPU
|
| 357 |
def generate_viz_wrapper(uploaded_image_pil, prompt_text, steps, gen_length, block_length, temperature,
|
| 358 |
cfg_scale, remasking_strategy, thinking_mode_mmu=False):
|
| 359 |
+
global MODEL, TOKENIZER, MASK_ID, DEVICE
|
| 360 |
+
|
| 361 |
if MODEL is None or TOKENIZER is None or MASK_ID is None:
|
| 362 |
yield [("Error: Model not loaded. Please load the model first.", "ERROR")], "Model not loaded."
|
| 363 |
return
|
| 364 |
+
|
| 365 |
+
steps = int(steps)
|
| 366 |
+
gen_length = int(gen_length)
|
| 367 |
+
block_length = int(block_length)
|
| 368 |
+
|
| 369 |
+
if thinking_mode_mmu:
|
| 370 |
+
prompt_text = "You should first think about the reasoning process in the mind and then provide the user with the answer. The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here\n" + prompt_text
|
| 371 |
+
|
| 372 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
m = [{"role": "user", "content": prompt_text}]
|
| 374 |
processed_prompt_text = TOKENIZER.apply_chat_template(m, add_generation_prompt=True, tokenize=False)
|
| 375 |
+
except Exception as e:
|
| 376 |
+
yield [("Error applying chat template.", "ERROR")], f"Chat template error: {e}"
|
| 377 |
+
processed_prompt_text = prompt_text
|
| 378 |
+
|
| 379 |
+
image_vq_ids_tensor = None
|
| 380 |
+
if uploaded_image_pil is not None:
|
| 381 |
+
try:
|
| 382 |
+
|
| 383 |
+
image = image_transform(uploaded_image_pil, resolution=512).to(DEVICE)
|
| 384 |
+
image = image.unsqueeze(0)
|
| 385 |
+
image_vq_ids_tensor = VQ_MODEL.get_code(image) + 126349
|
| 386 |
+
except Exception as e:
|
| 387 |
+
yield [("Error processing image.", "ERROR")], f"Image to VQ tokens conversion failed: {str(e)}"
|
| 388 |
+
return
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
try:
|
| 392 |
+
if TOKENIZER.pad_token_id is None:
|
| 393 |
+
if TOKENIZER.eos_token_id is not None:
|
| 394 |
+
TOKENIZER.pad_token_id = TOKENIZER.eos_token_id
|
| 395 |
+
else:
|
| 396 |
+
yield [("Tokenizer Error", "ERROR")], "pad_token_id is not set in tokenizer."
|
| 397 |
+
return
|
| 398 |
+
|
| 399 |
+
input_ids = TOKENIZER(text=processed_prompt_text, return_tensors="pt", padding="longest", padding_side="left", truncation=True, max_length=MODEL.config.max_position_embeddings if hasattr(MODEL.config, 'max_position_embeddings') else 2048)['input_ids'].to(DEVICE)
|
| 400 |
+
raw_prompt_attention_mask = None
|
| 401 |
if image_vq_ids_tensor is not None:
|
| 402 |
+
if image_vq_ids_tensor.ndim == 1:
|
| 403 |
+
image_vq_ids_tensor = image_vq_ids_tensor.unsqueeze(0)
|
| 404 |
+
|
| 405 |
+
input_ids = torch.cat([
|
| 406 |
+
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126089])).to(DEVICE),
|
| 407 |
+
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126084])).to(DEVICE),
|
| 408 |
+
image_vq_ids_tensor,
|
| 409 |
+
(torch.ones(input_ids.shape[0], 1) * torch.tensor([126085])).to(DEVICE),
|
| 410 |
+
input_ids
|
| 411 |
+
], dim=1).long()
|
| 412 |
+
|
| 413 |
+
else:
|
| 414 |
+
input_ids = input_ids
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
except Exception as e:
|
| 418 |
+
yield [("Error tokenizing prompt.", "ERROR")], f"Tokenization error: {e}"
|
| 419 |
+
return
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
batch_size = input_ids.shape[0]
|
| 424 |
+
prompt_len = input_ids.shape[1]
|
| 425 |
+
|
| 426 |
+
x = torch.full((batch_size, prompt_len + gen_length), MASK_ID, dtype=torch.long, device=DEVICE)
|
| 427 |
+
x[:, :prompt_len] = input_ids.clone()
|
| 428 |
+
|
| 429 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), "Starting generation: Prompt + Initial Masks"
|
| 430 |
+
|
| 431 |
+
if gen_length == 0:
|
| 432 |
+
final_text_output = TOKENIZER.batch_decode(x[:,prompt_len:], skip_special_tokens=True)
|
| 433 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_output[0] if final_text_output else ""
|
| 434 |
+
return
|
| 435 |
+
|
| 436 |
+
if block_length <= 0 or gen_length % block_length != 0 :
|
| 437 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
|
| 438 |
+
f"Error: gen_length ({gen_length}) must be divisible by block_length ({block_length}) and block_length > 0."
|
| 439 |
+
return
|
| 440 |
+
num_blocks = gen_length // block_length
|
| 441 |
+
|
| 442 |
+
if steps <=0 or steps % num_blocks != 0:
|
| 443 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), \
|
| 444 |
+
f"Error: steps ({steps}) must be positive and divisible by num_blocks ({num_blocks}). Steps: {steps}, Num Blocks: {num_blocks}"
|
| 445 |
+
return
|
| 446 |
+
steps_per_block = steps // num_blocks
|
| 447 |
+
|
| 448 |
+
for num_block_iter in range(num_blocks):
|
| 449 |
+
current_block_start_idx_in_x = prompt_len + num_block_iter * block_length
|
| 450 |
+
current_block_end_idx_in_x = prompt_len + (num_block_iter + 1) * block_length
|
| 451 |
+
|
| 452 |
+
block_masks_bool_current = torch.zeros_like(x, dtype=torch.bool)
|
| 453 |
+
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x] = \
|
| 454 |
+
(x[:, current_block_start_idx_in_x:current_block_end_idx_in_x] == MASK_ID)
|
| 455 |
+
|
| 456 |
+
num_transfer_tokens_for_this_block = get_num_transfer_tokens(
|
| 457 |
+
block_masks_bool_current[:, current_block_start_idx_in_x:current_block_end_idx_in_x],
|
| 458 |
+
steps_per_block
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
for i_step_in_block in range(steps_per_block):
|
| 462 |
+
mask_index_global = (x == MASK_ID)
|
| 463 |
+
|
| 464 |
+
if cfg_scale > 0.:
|
| 465 |
+
un_x = x.clone()
|
| 466 |
+
# For unconditional pass, mask out the original prompt tokens that are not padding
|
| 467 |
+
# raw_prompt_attention_mask is (B, prompt_len)
|
| 468 |
+
prompt_active_tokens_mask = raw_prompt_attention_mask.bool() # True where actual prompt tokens are
|
| 469 |
+
un_x[:, :prompt_len][prompt_active_tokens_mask] = MASK_ID
|
| 470 |
+
|
| 471 |
+
x_cfg_input = torch.cat([x, un_x], dim=0)
|
| 472 |
+
# Pass attention_mask for CFG if model expects it, covering both parts
|
| 473 |
+
# For simplicity, not passing explicit attention_mask here; relies on model's internal handling.
|
| 474 |
+
model_output = MODEL(x_cfg_input)
|
| 475 |
+
logits_cond, logits_uncond = torch.chunk(model_output.logits, 2, dim=0)
|
| 476 |
+
logits = logits_uncond + (cfg_scale + 1) * (logits_cond - logits_uncond)
|
| 477 |
+
else:
|
| 478 |
+
# Not passing explicit attention_mask here; relies on model's internal handling.
|
| 479 |
+
model_output = MODEL(x)
|
| 480 |
+
logits = model_output.logits
|
| 481 |
+
|
| 482 |
+
logits_with_noise = add_gumbel_noise(logits, temperature=temperature)
|
| 483 |
+
x0_predicted_tokens = torch.argmax(logits_with_noise, dim=-1)
|
| 484 |
+
|
| 485 |
+
if remasking_strategy == 'low_confidence':
|
| 486 |
+
probs = F.softmax(logits.to(torch.float64), dim=-1)
|
| 487 |
+
x0_probs = torch.gather(probs, dim=-1, index=x0_predicted_tokens.unsqueeze(-1)).squeeze(-1)
|
| 488 |
+
elif remasking_strategy == 'random':
|
| 489 |
+
x0_probs = torch.rand(x.shape, device=x.device, dtype=torch.float64)
|
| 490 |
+
else:
|
| 491 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), f"Error: Unknown remasking strategy '{remasking_strategy}'"
|
| 492 |
+
return
|
| 493 |
+
|
| 494 |
+
confidence_for_selection = torch.full_like(x0_probs, -torch.inf)
|
| 495 |
+
candidate_positions_for_unmasking = mask_index_global & block_masks_bool_current
|
| 496 |
+
confidence_for_selection = torch.where(
|
| 497 |
+
candidate_positions_for_unmasking,
|
| 498 |
+
x0_probs,
|
| 499 |
+
-torch.inf
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
x0_final_candidates = torch.where(mask_index_global, x0_predicted_tokens, x)
|
| 503 |
+
|
| 504 |
+
transfer_indices_bool = torch.zeros_like(x, dtype=torch.bool)
|
| 505 |
+
num_to_transfer_this_step_batch = num_transfer_tokens_for_this_block[:, i_step_in_block]
|
| 506 |
+
|
| 507 |
+
for j_batch_idx in range(batch_size):
|
| 508 |
+
k_val = min(num_to_transfer_this_step_batch[j_batch_idx].item(),
|
| 509 |
+
candidate_positions_for_unmasking[j_batch_idx].sum().item()) # ensure k isn't too large
|
| 510 |
+
|
| 511 |
+
if k_val > 0:
|
| 512 |
+
# Ensure confidence_for_selection[j_batch_idx] is 1D for topk
|
| 513 |
+
conf_slice = confidence_for_selection[j_batch_idx]
|
| 514 |
+
if conf_slice.ndim > 1: conf_slice = conf_slice.view(-1) # Should already be 1D from x0_probs
|
| 515 |
+
|
| 516 |
+
# Check if there are enough valid (non -inf) confidences
|
| 517 |
+
valid_conf_count = (conf_slice > -torch.inf).sum().item()
|
| 518 |
+
actual_k = min(k_val, valid_conf_count)
|
| 519 |
+
|
| 520 |
+
if actual_k > 0:
|
| 521 |
+
_, topk_indices_in_x = torch.topk(conf_slice, k=actual_k)
|
| 522 |
+
transfer_indices_bool[j_batch_idx, topk_indices_in_x] = True
|
| 523 |
+
|
| 524 |
+
x[transfer_indices_bool] = x0_final_candidates[transfer_indices_bool]
|
| 525 |
+
|
| 526 |
+
current_total_step = num_block_iter * steps_per_block + i_step_in_block + 1
|
| 527 |
+
total_overall_steps = num_blocks * steps_per_block
|
| 528 |
+
status_msg = f"Block {num_block_iter+1}/{num_blocks}, Step {i_step_in_block+1}/{steps_per_block} (Total: {current_total_step}/{total_overall_steps})"
|
| 529 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), status_msg
|
| 530 |
+
|
| 531 |
+
final_generated_ids = x[:, prompt_len:]
|
| 532 |
+
final_text_output = TOKENIZER.batch_decode(final_generated_ids, skip_special_tokens=True)
|
| 533 |
+
|
| 534 |
+
final_text_str = final_text_output[0] if final_text_output and len(final_text_output) > 0 else ""
|
| 535 |
+
yield get_highlighted_text_tuples(x, input_ids, prompt_len, TOKENIZER, MASK_ID, raw_prompt_attention_mask), final_text_str
|
| 536 |
+
|
| 537 |
+
|
| 538 |
css_styles = """
|
| 539 |
.gradio-container{font-family:'IBM Plex Sans',sans-serif;margin:auto;}
|
| 540 |
.gr-input {background:#f9f9f9 !important;border:1px solid #e0e0e0 !important;}
|
| 541 |
.gr-output{background:#f0f0f0 !important;border:1px solid #d0d0d0 !important;}
|
| 542 |
+
|
| 543 |
+
.highlighted-text span{
|
| 544 |
+
padding:2px 4px;border-radius:4px;margin:1px 2px;display:inline-block;line-height:1.6;
|
| 545 |
+
}
|
| 546 |
+
|
| 547 |
footer{display:none !important}
|
| 548 |
+
|
| 549 |
+
#live-update-scrollable-box {
|
| 550 |
+
max-height: 800px; /* 您可以根据需要调整这个最大高度,例如 '300px', '50vh' 等 */
|
| 551 |
+
overflow-y: auto !important; /* 当内容超出 max-height 时显示垂直滚动条 */
|
| 552 |
+
display: block; /* 确保元素是块级元素,以便 max-height 生效 */
|
| 553 |
+
|
| 554 |
+
}
|
| 555 |
+
#think_btn {
|
| 556 |
+
background-color: #f3f4f6 !important;
|
| 557 |
+
border: 1px solid #d0d0d0 !important;
|
| 558 |
+
color: #111827 !important;
|
| 559 |
+
font-size: 16px !important;
|
| 560 |
+
font-weight: bold !important;
|
| 561 |
+
}
|
| 562 |
+
#think_btn:hover {
|
| 563 |
+
background-color: #e0e0e0 !important;
|
| 564 |
+
border: 1px solid #c0c0c0 !important;
|
| 565 |
+
color: #222 !important;
|
| 566 |
+
}
|
| 567 |
+
#think_btn:active {
|
| 568 |
+
background-color: #2563eb !important;
|
| 569 |
+
border: 1px solid #b0b0b0 !important;
|
| 570 |
+
color: white !important;
|
| 571 |
+
}
|
| 572 |
"""
|
| 573 |
|
| 574 |
+
|
| 575 |
+
# thinking_mode_t2i = gr.State(False)
|
| 576 |
+
def toggle_thinking_mode_lm(current_thinking_mode):
|
| 577 |
+
new_state = not current_thinking_mode
|
| 578 |
+
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
|
| 579 |
+
return new_state, gr.update(value=new_label)
|
| 580 |
+
|
| 581 |
+
def toggle_thinking_mode_mmu(current_thinking_mode):
|
| 582 |
new_state = not current_thinking_mode
|
| 583 |
new_label = "Thinking Mode ✅" if new_state else "Thinking Mode ❌"
|
| 584 |
return new_state, gr.update(value=new_label)
|
| 585 |
|
|
|
|
| 586 |
|
| 587 |
+
color_map_config = {
|
| 588 |
+
"MASK": "lightgrey",
|
| 589 |
+
"GEN": "#DCABFA",
|
| 590 |
+
}
|
| 591 |
|
| 592 |
+
theme = gr.themes.Ocean(
|
| 593 |
+
primary_hue="fuchsia",
|
| 594 |
+
)
|
| 595 |
with gr.Blocks(css=css_styles, theme=theme) as demo:
|
| 596 |
+
# with gr.Blocks(css=css_styles, theme=gr.themes.Soft(primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.sky)) as demo:
|
| 597 |
+
# with gr.Blocks() as demo:
|
| 598 |
+
thinking_mode_lm = gr.State(True)
|
| 599 |
+
thinking_mode_mmu = gr.State(True)
|
| 600 |
+
# gr.Markdown("<h1 style='text-align: center; margin-bottom: 20px;'>MMaDA: Multimodal Large Diffusion Language Models</h1>")
|
| 601 |
+
# gr.Markdown("MMaDA is a novel class of multimodal diffusion foundation models designed to achieve superior performance across diverse domains such as textual reasoning, multimodal understanding, and text-to-image generation")
|
| 602 |
+
# gr.Markdown("Github: [Gen-Verse/MMaDA](https://github.com/Gen-Verse/MMaDA)")
|
| 603 |
+
# gr.Markdown("Paper: [MMaDA: Multimodal Large Diffusion Language Models]()")
|
| 604 |
gr.HTML("""
|
| 605 |
<div align="center" style="margin-bottom: 20px;">
|
| 606 |
<img src='/gradio_api/file=title.png' width="160">
|
|
|
|
| 608 |
MMaDA is a new class of multimodal diffusion foundation models, enabling state-of-the-art performance in reasoning, multimodal understanding, and text-to-image generation.
|
| 609 |
</p>
|
| 610 |
<p style="font-size: 15px;">
|
| 611 |
+
📄 <a href="https://arxiv.org/abs/2505.15809" target="_blank">Paper</a>
|
| 612 |
+
|
|
| 613 |
+
💻 <a href="https://github.com/Gen-Verse/MMaDA" target="_blank">Code</a>
|
| 614 |
</p>
|
| 615 |
</div>
|
| 616 |
""")
|
|
|
|
| 617 |
with gr.Row():
|
| 618 |
+
gr.HTML("""
|
| 619 |
+
<div style="display: flex; justify-content: center; align-items: center; padding: 15px;">
|
| 620 |
+
<span style="padding: 8px 15px; border-radius: 15px; font-weight: bold; margin: 0 10px; background-color: #E879F9; color: white;">
|
| 621 |
+
MMaDA-8B-MixCoT (Active)
|
| 622 |
+
</span>
|
| 623 |
+
<span style="padding: 8px 15px; border-radius: 15px; font-weight: bold; margin: 0 10px; background-color: #E5E7EB; color: #6B7280; cursor: not-allowed;">
|
| 624 |
+
MMaDA-8B-Max (coming soon)
|
| 625 |
+
</span>
|
| 626 |
+
</div>
|
| 627 |
+
""")
|
|
|
|
|
|
|
|
|
|
| 628 |
|
|
|
|
| 629 |
gr.Markdown("## Part 1. Text Generation")
|
| 630 |
with gr.Row():
|
| 631 |
with gr.Column(scale=2):
|
| 632 |
prompt_input_box_lm = gr.Textbox(label="Enter your prompt:", lines=3, value="A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?")
|
| 633 |
think_button_lm = gr.Button("Thinking Mode ✅", elem_id="think_btn")
|
| 634 |
with gr.Accordion("Generation Parameters", open=True):
|
|
|
|
| 635 |
with gr.Row():
|
| 636 |
+
gen_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.")
|
| 637 |
+
steps_slider_lm = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
|
| 638 |
with gr.Row():
|
| 639 |
+
block_length_slider_lm = gr.Slider(minimum=8, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.")
|
| 640 |
remasking_dropdown_lm = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
|
| 641 |
with gr.Row():
|
| 642 |
+
cfg_scale_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.")
|
| 643 |
+
temperature_slider_lm = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.")
|
| 644 |
+
|
| 645 |
+
|
| 646 |
with gr.Row():
|
| 647 |
run_button_ui_lm = gr.Button("Generate Sequence", variant="primary", scale=3)
|
| 648 |
clear_button_ui_lm = gr.Button("Clear Outputs", scale=1)
|
| 649 |
+
|
| 650 |
with gr.Column(scale=3):
|
| 651 |
+
# gr.Markdown("## Live Generation Process")
|
| 652 |
+
output_visualization_box_lm = gr.HighlightedText(
|
| 653 |
+
label="Live Generation Process",
|
| 654 |
+
show_legend=True,
|
| 655 |
+
color_map=color_map_config,
|
| 656 |
+
combine_adjacent=False,
|
| 657 |
+
interactive=False,
|
| 658 |
+
elem_id="live-update-scrollable-box",
|
| 659 |
+
)
|
| 660 |
+
# gr.Markdown("## Final Generated Text")
|
| 661 |
output_final_text_box_lm = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
|
| 665 |
gr.Examples(
|
| 666 |
examples=[
|
| 667 |
["A rectangular prism has a length of 5 units, a width of 4 units, and a height of 3 units. What is the volume of the prism?", 256, 512, 128, 1, 0, "low_confidence"],
|
|
|
|
| 672 |
fn=generate_viz_wrapper_lm,
|
| 673 |
cache_examples=False
|
| 674 |
)
|
| 675 |
+
|
|
|
|
| 676 |
gr.Markdown("---")
|
| 677 |
gr.Markdown("## Part 2. Multimodal Understanding")
|
| 678 |
with gr.Row():
|
|
|
|
| 679 |
with gr.Column(scale=2):
|
| 680 |
+
prompt_input_box_mmu = gr.Textbox(
|
| 681 |
+
label="Enter your prompt:",
|
| 682 |
+
lines=3,
|
| 683 |
+
value="Please describe this image in detail."
|
| 684 |
+
)
|
| 685 |
think_button_mmu = gr.Button("Thinking Mode ✅", elem_id="think_btn")
|
| 686 |
with gr.Accordion("Generation Parameters", open=True):
|
| 687 |
+
with gr.Row():
|
| 688 |
+
gen_length_slider_mmu = gr.Slider(minimum=64, maximum=1024, value=512, step=64, label="Generation Length", info="Number of tokens to generate.")
|
| 689 |
+
steps_slider_mmu = gr.Slider(minimum=1, maximum=512, value=256, step=32, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
|
| 690 |
+
with gr.Row():
|
| 691 |
+
block_length_slider_mmu = gr.Slider(minimum=32, maximum=1024, value=128, step=32, label="Block Length", info="gen_length must be divisible by this.")
|
| 692 |
remasking_dropdown_mmu = gr.Dropdown(choices=['low_confidence', 'random'], value='low_confidence', label="Remasking Strategy")
|
| 693 |
+
with gr.Row():
|
| 694 |
+
cfg_scale_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale", info="Classifier-Free Guidance. 0 disables it.")
|
| 695 |
+
temperature_slider_mmu = gr.Slider(minimum=0.0, maximum=2.0, value=1, step=0.05, label="Temperature", info="Controls randomness via Gumbel noise. 0 is deterministic.")
|
| 696 |
+
|
| 697 |
with gr.Row():
|
| 698 |
image_upload_box = gr.Image(type="pil", label="Upload Image")
|
| 699 |
+
|
| 700 |
with gr.Row():
|
| 701 |
run_button_ui_mmu = gr.Button("Generate Description", variant="primary", scale=3)
|
| 702 |
clear_button_ui_mmu = gr.Button("Clear Outputs", scale=1)
|
| 703 |
+
|
| 704 |
with gr.Column(scale=3):
|
| 705 |
+
gr.Markdown("## Live Generation Process")
|
| 706 |
+
output_visualization_box_mmu = gr.HighlightedText(
|
| 707 |
+
label="Token Sequence (Live Update)",
|
| 708 |
+
show_legend=True,
|
| 709 |
+
color_map=color_map_config,
|
| 710 |
+
combine_adjacent=False,
|
| 711 |
+
interactive=False,
|
| 712 |
+
elem_id="live-update-scrollable-box",
|
| 713 |
+
)
|
| 714 |
+
gr.Markdown("## Final Generated Text")
|
| 715 |
output_final_text_box_mmu = gr.Textbox(label="Final Output", lines=8, interactive=False, show_copy_button=True)
|
| 716 |
+
|
| 717 |
+
|
| 718 |
gr.Examples(
|
| 719 |
examples=[
|
| 720 |
["figs/geo.png", "In the given figure, a square ABCD is inscribed in a circle with center O. Point P is located on side CD. What is the value of angle APB?", 256, 512, 64, 1, 0, "low_confidence"],
|
| 721 |
["figs/bus.jpg", "What are the colors of the bus?", 256, 512, 64, 1, 0, "low_confidence"]
|
| 722 |
],
|
| 723 |
+
inputs=[
|
| 724 |
+
image_upload_box,
|
| 725 |
+
prompt_input_box_mmu,
|
| 726 |
+
steps_slider_mmu,
|
| 727 |
+
gen_length_slider_mmu,
|
| 728 |
+
block_length_slider_mmu,
|
| 729 |
+
temperature_slider_mmu,
|
| 730 |
+
cfg_scale_slider_mmu,
|
| 731 |
+
remasking_dropdown_mmu
|
| 732 |
+
],
|
| 733 |
outputs=[output_visualization_box_mmu, output_final_text_box_mmu],
|
| 734 |
fn=generate_viz_wrapper,
|
| 735 |
cache_examples=False
|
| 736 |
)
|
| 737 |
+
|
| 738 |
gr.Markdown("---")
|
| 739 |
gr.Markdown("## Part 3. Text-to-Image Generation")
|
|
|
|
| 740 |
with gr.Row():
|
| 741 |
with gr.Column(scale=2):
|
| 742 |
prompt_input_box_t2i = gr.Textbox(label="Enter your prompt:", lines=3, value="A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.")
|
| 743 |
+
|
| 744 |
with gr.Accordion("Generation Parameters", open=True):
|
| 745 |
with gr.Row():
|
| 746 |
+
steps_slider_t2i = gr.Slider(minimum=5, maximum=100, value=15, step=5, label="Total Sampling Steps", info="Must be divisible by (gen_length / block_length).")
|
| 747 |
+
guidance_scale_slider_t2i = gr.Slider(minimum=0.0, maximum=7.0, value=3.5, step=0.5, label="Guidance Scale", info="Classifier-Free Guidance. 0 disables it.")
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
with gr.Row():
|
| 751 |
+
scheduler_radio_t2i = gr.Radio(
|
| 752 |
+
choices=["cosine", "sigmoid", "linear"],
|
| 753 |
+
value="cosine",
|
| 754 |
+
label="Scheduler",
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
with gr.Row():
|
| 758 |
run_button_ui_t2i = gr.Button("Generate Image", variant="primary", scale=3)
|
| 759 |
clear_button_ui_t2i = gr.Button("Clear Outputs", scale=1)
|
| 760 |
+
|
| 761 |
+
|
| 762 |
with gr.Column(scale=3):
|
| 763 |
+
# gr.Markdown("## Live Generation Process")
|
| 764 |
output_image_t2i = gr.Image(label="Generated Image", interactive=False, type="pil")
|
| 765 |
output_status_t2i = gr.Textbox(label="Generation Status", interactive=False)
|
| 766 |
+
|
| 767 |
gr.Examples(
|
| 768 |
examples=[
|
| 769 |
["A sea turtle swimming near a coral reef in the ocean, with a clear blue sky and water in the background.", 15, 3.5, "cosine"],
|
|
|
|
| 774 |
fn=generate_viz_wrapper_t2i,
|
| 775 |
cache_examples=False
|
| 776 |
)
|
| 777 |
+
|
| 778 |
+
run_button_ui_t2i.click(
|
| 779 |
+
fn=generate_viz_wrapper_t2i,
|
| 780 |
+
inputs=[
|
| 781 |
+
prompt_input_box_t2i,
|
| 782 |
+
steps_slider_t2i,
|
| 783 |
+
guidance_scale_slider_t2i,
|
| 784 |
+
scheduler_radio_t2i
|
| 785 |
+
],
|
| 786 |
+
outputs=[output_image_t2i, output_status_t2i]
|
| 787 |
+
)
|
| 788 |
|
| 789 |
+
clear_button_ui_t2i.click(
|
| 790 |
+
fn=lambda: (None, ""),
|
| 791 |
+
inputs=None,
|
| 792 |
+
outputs=[output_image_t2i, output_status_t2i],
|
| 793 |
+
queue=False
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
think_button_lm.click(
|
| 797 |
+
fn=toggle_thinking_mode_lm,
|
| 798 |
+
inputs=[thinking_mode_lm],
|
| 799 |
+
outputs=[thinking_mode_lm, think_button_lm]
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
think_button_mmu.click(
|
| 803 |
+
fn=toggle_thinking_mode_mmu,
|
| 804 |
+
inputs=[thinking_mode_mmu],
|
| 805 |
+
outputs=[thinking_mode_mmu, think_button_mmu]
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
def initialize_default_model():
|
| 811 |
+
default_model = "MMaDA-8B-Base"
|
| 812 |
+
result = handle_model_selection_change(default_model)
|
| 813 |
+
return default_model, result
|
| 814 |
+
|
| 815 |
+
def clear_outputs():
|
| 816 |
+
return None, None, None # Clear image, visualization, and final text
|
| 817 |
|
| 818 |
+
clear_button_ui_lm.click(
|
| 819 |
+
fn=clear_outputs,
|
| 820 |
inputs=None,
|
| 821 |
+
outputs=[image_upload_box, output_visualization_box_lm, output_final_text_box_lm],
|
| 822 |
+
queue=False
|
| 823 |
+
)
|
| 824 |
+
clear_button_ui_mmu.click(
|
| 825 |
+
fn=clear_outputs,
|
| 826 |
+
inputs=None,
|
| 827 |
+
outputs=[image_upload_box, output_visualization_box_mmu, output_final_text_box_mmu],
|
| 828 |
+
queue=False
|
| 829 |
+
)
|
| 830 |
+
|
| 831 |
+
run_button_ui_lm.click(
|
| 832 |
+
fn=generate_viz_wrapper_lm,
|
| 833 |
+
inputs=[
|
| 834 |
+
prompt_input_box_lm,
|
| 835 |
+
steps_slider_lm,
|
| 836 |
+
gen_length_slider_lm,
|
| 837 |
+
block_length_slider_lm,
|
| 838 |
+
temperature_slider_lm,
|
| 839 |
+
cfg_scale_slider_lm,
|
| 840 |
+
remasking_dropdown_lm,
|
| 841 |
+
thinking_mode_lm
|
| 842 |
],
|
| 843 |
+
outputs=[output_visualization_box_lm, output_final_text_box_lm]
|
| 844 |
)
|
| 845 |
+
|
| 846 |
+
run_button_ui_mmu.click(
|
| 847 |
+
fn=generate_viz_wrapper,
|
| 848 |
+
inputs=[
|
| 849 |
+
image_upload_box,
|
| 850 |
+
prompt_input_box_mmu,
|
| 851 |
+
steps_slider_mmu,
|
| 852 |
+
gen_length_slider_mmu,
|
| 853 |
+
block_length_slider_mmu,
|
| 854 |
+
temperature_slider_mmu,
|
| 855 |
+
cfg_scale_slider_mmu,
|
| 856 |
+
remasking_dropdown_mmu,
|
| 857 |
+
thinking_mode_mmu
|
| 858 |
+
],
|
| 859 |
+
outputs=[output_visualization_box_mmu, output_final_text_box_mmu]
|
| 860 |
+
)
|
| 861 |
+
|
| 862 |
|
| 863 |
if __name__ == "__main__":
|
| 864 |
print(f"Starting Gradio App. Attempting to use device: {DEVICE}")
|
| 865 |
+
demo.launch(allowed_paths=["title.png"])
|