Spaces:
Sleeping
Sleeping
Chandranshu Jain
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,18 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from PyPDF2 import PdfReader
|
| 3 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 4 |
import os
|
| 5 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 6 |
from langchain_community.vectorstores import Chroma
|
| 7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 8 |
from langchain.chains.question_answering import load_qa_chain
|
| 9 |
from langchain.prompts import PromptTemplate
|
| 10 |
from langchain_community.document_loaders import PyPDFLoader
|
| 11 |
from langchain_chroma import Chroma
|
| 12 |
-
import
|
| 13 |
-
from langchain_cohere import CohereEmbeddings
|
| 14 |
|
| 15 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
| 16 |
|
|
@@ -33,19 +35,13 @@ from langchain_cohere import CohereEmbeddings
|
|
| 33 |
# docs = loader.load()
|
| 34 |
# return docs
|
| 35 |
|
| 36 |
-
def
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
file.write(uploaded_file.getvalue())
|
| 44 |
-
file_name = uploaded_file.name
|
| 45 |
-
loader = PyPDFLoader(temp_file)
|
| 46 |
-
docs = loader.load()
|
| 47 |
-
return docs
|
| 48 |
-
|
| 49 |
def text_splitter(text):
|
| 50 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 51 |
# Set a really small chunk size, just to show.
|
|
@@ -55,8 +51,8 @@ def text_splitter(text):
|
|
| 55 |
chunks=text_splitter.split_documents(text)
|
| 56 |
return chunks
|
| 57 |
|
| 58 |
-
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
| 59 |
-
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
| 60 |
|
| 61 |
def get_conversational_chain():
|
| 62 |
prompt_template = """
|
|
@@ -79,7 +75,8 @@ def get_conversational_chain():
|
|
| 79 |
|
| 80 |
def embedding(chunk,query):
|
| 81 |
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 82 |
-
embeddings = CohereEmbeddings(model="embed-english-v3.0")
|
|
|
|
| 83 |
db = Chroma.from_documents(chunk,embeddings)
|
| 84 |
doc = db.similarity_search(query)
|
| 85 |
print(doc)
|
|
@@ -96,11 +93,12 @@ if 'messages' not in st.session_state:
|
|
| 96 |
st.header("Chat with your pdf💁")
|
| 97 |
with st.sidebar:
|
| 98 |
st.title("PDF FILE UPLOAD:")
|
| 99 |
-
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=
|
| 100 |
|
| 101 |
query = st.chat_input("Ask a Question from the PDF File")
|
| 102 |
if query:
|
| 103 |
-
|
|
|
|
| 104 |
text_chunks = text_splitter(raw_text)
|
| 105 |
st.session_state.messages.append({'role': 'user', "content": query})
|
| 106 |
response = embedding(text_chunks,query)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 3 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 4 |
+
from langchain_core.runnables import RunnablePassthrough
|
| 5 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 6 |
+
from langchain.prompts import ChatPromptTemplate
|
| 7 |
from PyPDF2 import PdfReader
|
| 8 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 9 |
import os
|
|
|
|
| 10 |
from langchain_community.vectorstores import Chroma
|
|
|
|
| 11 |
from langchain.chains.question_answering import load_qa_chain
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
from langchain_community.document_loaders import PyPDFLoader
|
| 14 |
from langchain_chroma import Chroma
|
| 15 |
+
from langchain_community.vectorstores import Chroma
|
|
|
|
| 16 |
|
| 17 |
#st.set_page_config(page_title="Document Genie", layout="wide")
|
| 18 |
|
|
|
|
| 35 |
# docs = loader.load()
|
| 36 |
# return docs
|
| 37 |
|
| 38 |
+
def get_pdf_text(pdf_docs):
|
| 39 |
+
docs=[]
|
| 40 |
+
for pdf in pdf_docs:
|
| 41 |
+
loader = PyPDFLoader(temp_file)
|
| 42 |
+
docs.extend(loader.load())
|
| 43 |
+
return docs
|
| 44 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def text_splitter(text):
|
| 46 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 47 |
# Set a really small chunk size, just to show.
|
|
|
|
| 51 |
chunks=text_splitter.split_documents(text)
|
| 52 |
return chunks
|
| 53 |
|
| 54 |
+
#GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
|
| 55 |
+
#COHERE_API_KEY = os.getenv("COHERE_API_KEY")
|
| 56 |
|
| 57 |
def get_conversational_chain():
|
| 58 |
prompt_template = """
|
|
|
|
| 75 |
|
| 76 |
def embedding(chunk,query):
|
| 77 |
#embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 78 |
+
#embeddings = CohereEmbeddings(model="embed-english-v3.0")
|
| 79 |
+
embeddings=HuggingFaceEmbeddings()
|
| 80 |
db = Chroma.from_documents(chunk,embeddings)
|
| 81 |
doc = db.similarity_search(query)
|
| 82 |
print(doc)
|
|
|
|
| 93 |
st.header("Chat with your pdf💁")
|
| 94 |
with st.sidebar:
|
| 95 |
st.title("PDF FILE UPLOAD:")
|
| 96 |
+
pdf_docs = st.file_uploader("Upload your PDF File and Click on the Submit & Process Button", accept_multiple_files=TRUE, key="pdf_uploader")
|
| 97 |
|
| 98 |
query = st.chat_input("Ask a Question from the PDF File")
|
| 99 |
if query:
|
| 100 |
+
for file in os.listdir(pdf_docs):
|
| 101 |
+
raw_text = get_pdf(file)
|
| 102 |
text_chunks = text_splitter(raw_text)
|
| 103 |
st.session_state.messages.append({'role': 'user', "content": query})
|
| 104 |
response = embedding(text_chunks,query)
|