Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,12 +15,11 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
| 15 |
#from transformers import pipeline
|
| 16 |
# Load model directly
|
| 17 |
#from transformers import AutoModelForCausalLM
|
| 18 |
-
from
|
|
|
|
| 19 |
|
| 20 |
-
HUGGINGFACEHUB_API_TOKEN = getpass()
|
| 21 |
|
| 22 |
|
| 23 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = HUGGINGFACEHUB_API_TOKEN
|
| 24 |
#access_token = os.getenv("HUGGINGFACE_API_KEY")
|
| 25 |
|
| 26 |
|
|
@@ -92,12 +91,16 @@ def get_conversational_chain(retriever):
|
|
| 92 |
#repo_id='meta-llama/Meta-Llama-3-70B'
|
| 93 |
#repo_id = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
|
| 94 |
#repo_id= 'nvidia/Llama3-ChatQA-1.5-8B'
|
| 95 |
-
repo_id= 'google/gemma-1.1-2b-it'
|
| 96 |
-
llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.3,token = HUGGINGFACEHUB_API_TOKEN)
|
| 97 |
#tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it")
|
| 98 |
#llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
|
| 99 |
#llm = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True, token=access_token)
|
| 100 |
#llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
pt = ChatPromptTemplate.from_template(prompt_template)
|
| 103 |
# Retrieve and generate using the relevant snippets of the blog.
|
|
|
|
| 15 |
#from transformers import pipeline
|
| 16 |
# Load model directly
|
| 17 |
#from transformers import AutoModelForCausalLM
|
| 18 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 19 |
+
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
|
|
|
|
| 23 |
#access_token = os.getenv("HUGGINGFACE_API_KEY")
|
| 24 |
|
| 25 |
|
|
|
|
| 91 |
#repo_id='meta-llama/Meta-Llama-3-70B'
|
| 92 |
#repo_id = 'mistralai/Mixtral-8x7B-Instruct-v0.1'
|
| 93 |
#repo_id= 'nvidia/Llama3-ChatQA-1.5-8B'
|
| 94 |
+
#repo_id= 'google/gemma-1.1-2b-it'
|
| 95 |
+
#llm = HuggingFaceEndpoint(repo_id=repo_id, temperature=0.3,token = HUGGINGFACEHUB_API_TOKEN)
|
| 96 |
#tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it")
|
| 97 |
#llm = AutoModelForCausalLM.from_pretrained("google/gemma-1.1-2b-it")
|
| 98 |
#llm = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True, token=access_token)
|
| 99 |
#llm = pipeline("text-generation", model="google/gemma-1.1-2b-it")
|
| 100 |
+
llm = HuggingFacePipeline.from_model_id(
|
| 101 |
+
model_id="Phi-3-mini-128k-instruct",
|
| 102 |
+
task="text-generation",
|
| 103 |
+
pipeline_kwargs={"max_new_tokens": 10})
|
| 104 |
|
| 105 |
pt = ChatPromptTemplate.from_template(prompt_template)
|
| 106 |
# Retrieve and generate using the relevant snippets of the blog.
|