back to gradio
Browse files- __pycache__/framevis.cpython-312.pyc +0 -0
- app.py +9 -124
__pycache__/framevis.cpython-312.pyc
ADDED
|
Binary file (23.2 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,84 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
| 4 |
-
import tempfile
|
| 5 |
-
import os
|
| 6 |
from framevis import FrameVis
|
| 7 |
-
import json
|
| 8 |
-
|
| 9 |
-
class InteractiveFrameVis(FrameVis):
|
| 10 |
-
"""Extended FrameVis class that tracks frame positions"""
|
| 11 |
-
|
| 12 |
-
def visualize(self, source, nframes, height=None, width=None, direction="horizontal", trim=False, quiet=True):
|
| 13 |
-
"""Extended visualize method that returns both the visualization and frame data"""
|
| 14 |
-
video = cv2.VideoCapture(source)
|
| 15 |
-
if not video.isOpened():
|
| 16 |
-
raise FileNotFoundError("Source Video Not Found")
|
| 17 |
-
|
| 18 |
-
# Calculate frame positions and timestamps
|
| 19 |
-
total_frames = video.get(cv2.CAP_PROP_FRAME_COUNT)
|
| 20 |
-
fps = video.get(cv2.CAP_PROP_FPS)
|
| 21 |
-
keyframe_interval = total_frames / nframes
|
| 22 |
-
|
| 23 |
-
# Get the visualization
|
| 24 |
-
output_image = super().visualize(source, nframes, height, width, direction, trim, quiet)
|
| 25 |
-
|
| 26 |
-
# Calculate frame positions and timestamps
|
| 27 |
-
frame_data = []
|
| 28 |
-
img_height, img_width = output_image.shape[:2]
|
| 29 |
-
|
| 30 |
-
for i in range(nframes):
|
| 31 |
-
frame_pos = int(keyframe_interval * (i + 0.5)) # Same calculation as in visualize
|
| 32 |
-
timestamp = frame_pos / fps
|
| 33 |
-
|
| 34 |
-
if direction == "horizontal":
|
| 35 |
-
x_start = (i * img_width) // nframes
|
| 36 |
-
x_end = ((i + 1) * img_width) // nframes
|
| 37 |
-
frame_info = {
|
| 38 |
-
"frame": frame_pos,
|
| 39 |
-
"time": timestamp,
|
| 40 |
-
"x_start": int(x_start),
|
| 41 |
-
"x_end": int(x_end),
|
| 42 |
-
"y_start": 0,
|
| 43 |
-
"y_end": img_height
|
| 44 |
-
}
|
| 45 |
-
else: # vertical
|
| 46 |
-
y_start = (i * img_height) // nframes
|
| 47 |
-
y_end = ((i + 1) * img_height) // nframes
|
| 48 |
-
frame_info = {
|
| 49 |
-
"frame": frame_pos,
|
| 50 |
-
"time": timestamp,
|
| 51 |
-
"x_start": 0,
|
| 52 |
-
"x_end": img_width,
|
| 53 |
-
"y_start": int(y_start),
|
| 54 |
-
"y_end": int(y_end)
|
| 55 |
-
}
|
| 56 |
-
frame_data.append(frame_info)
|
| 57 |
-
|
| 58 |
-
video.release()
|
| 59 |
-
return output_image, frame_data
|
| 60 |
-
|
| 61 |
-
def extract_frame(video_path, frame_number):
|
| 62 |
-
"""Extract a specific frame from the video"""
|
| 63 |
-
if not video_path:
|
| 64 |
-
return None
|
| 65 |
-
|
| 66 |
-
cap = cv2.VideoCapture(video_path)
|
| 67 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
| 68 |
-
ret, frame = cap.read()
|
| 69 |
-
cap.release()
|
| 70 |
-
|
| 71 |
-
if ret:
|
| 72 |
-
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 73 |
-
return None
|
| 74 |
|
| 75 |
def process_video(video_path, nframes, height, width, direction, trim, average, blur_amount):
|
| 76 |
-
"""Process video using FrameVis and return the visualization
|
| 77 |
try:
|
| 78 |
-
fv =
|
| 79 |
|
| 80 |
# Process the video
|
| 81 |
-
output_image
|
| 82 |
video_path,
|
| 83 |
nframes=nframes,
|
| 84 |
height=height if height > 0 else None,
|
|
@@ -96,53 +27,17 @@ def process_video(video_path, nframes, height, width, direction, trim, average,
|
|
| 96 |
|
| 97 |
# Convert from BGR to RGB for Gradio
|
| 98 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
| 99 |
-
|
| 100 |
-
# Store frame data in a temporary file
|
| 101 |
-
temp_dir = tempfile.gettempdir()
|
| 102 |
-
data_path = os.path.join(temp_dir, "frame_data.json")
|
| 103 |
-
with open(data_path, "w") as f:
|
| 104 |
-
json.dump({"video_path": video_path, "frames": frame_data}, f)
|
| 105 |
-
|
| 106 |
-
return output_image, data_path
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
raise gr.Error(str(e))
|
| 110 |
|
| 111 |
-
def on_mouse_move(evt: gr.EventData, frame_data_path):
|
| 112 |
-
"""Handle mouseover on the visualization image"""
|
| 113 |
-
if not frame_data_path:
|
| 114 |
-
return None
|
| 115 |
-
|
| 116 |
-
try:
|
| 117 |
-
# Load frame data
|
| 118 |
-
with open(frame_data_path) as f:
|
| 119 |
-
data = json.load(f)
|
| 120 |
-
|
| 121 |
-
video_path = data["video_path"]
|
| 122 |
-
frames = data["frames"]
|
| 123 |
-
|
| 124 |
-
# Get mouse coordinates
|
| 125 |
-
x, y = evt.index[0], evt.index[1] # Extract x, y from index
|
| 126 |
-
|
| 127 |
-
# Find which frame was hovered
|
| 128 |
-
for frame in frames:
|
| 129 |
-
if (frame["x_start"] <= x <= frame["x_end"] and
|
| 130 |
-
frame["y_start"] <= y <= frame["y_end"]):
|
| 131 |
-
# Extract and return the frame
|
| 132 |
-
preview = extract_frame(video_path, frame["frame"])
|
| 133 |
-
if preview is not None:
|
| 134 |
-
return preview, f"Frame {frame['frame']} (Time: {frame['time']:.2f}s)"
|
| 135 |
-
|
| 136 |
-
except Exception as e:
|
| 137 |
-
print(f"Error handling mouseover: {e}")
|
| 138 |
-
return None, ""
|
| 139 |
-
|
| 140 |
# Create the Gradio interface
|
| 141 |
with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
| 142 |
gr.Markdown("""
|
| 143 |
# 🎬 FrameVis - Video Frame Visualizer
|
| 144 |
Upload a video to create a beautiful visualization of its frames. The tool will extract frames at regular intervals
|
| 145 |
-
and combine them into a single image.
|
| 146 |
""")
|
| 147 |
|
| 148 |
with gr.Row():
|
|
@@ -168,14 +63,11 @@ with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
|
| 168 |
process_btn = gr.Button("Generate Visualization", variant="primary")
|
| 169 |
|
| 170 |
with gr.Column(scale=2):
|
| 171 |
-
# Output
|
| 172 |
-
|
| 173 |
-
output_image = gr.Image(label="Visualization Result", tool="select", height=300)
|
| 174 |
-
frame_info = gr.Markdown("Click on the visualization to see frame details")
|
| 175 |
-
preview_frame = gr.Image(label="Frame Preview", interactive=False, height=300)
|
| 176 |
|
| 177 |
# Handle processing
|
| 178 |
-
|
| 179 |
fn=process_video,
|
| 180 |
inputs=[
|
| 181 |
video_input,
|
|
@@ -187,14 +79,7 @@ with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
|
| 187 |
average,
|
| 188 |
blur_amount
|
| 189 |
],
|
| 190 |
-
outputs=
|
| 191 |
-
)
|
| 192 |
-
|
| 193 |
-
# Handle selection events
|
| 194 |
-
output_image.select(
|
| 195 |
-
fn=on_mouse_move,
|
| 196 |
-
inputs=[frame_data],
|
| 197 |
-
outputs=[preview_frame, frame_info]
|
| 198 |
)
|
| 199 |
|
| 200 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import cv2
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
| 4 |
from framevis import FrameVis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
def process_video(video_path, nframes, height, width, direction, trim, average, blur_amount):
|
| 7 |
+
"""Process video using FrameVis and return the visualization"""
|
| 8 |
try:
|
| 9 |
+
fv = FrameVis()
|
| 10 |
|
| 11 |
# Process the video
|
| 12 |
+
output_image = fv.visualize(
|
| 13 |
video_path,
|
| 14 |
nframes=nframes,
|
| 15 |
height=height if height > 0 else None,
|
|
|
|
| 27 |
|
| 28 |
# Convert from BGR to RGB for Gradio
|
| 29 |
output_image = cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB)
|
| 30 |
+
return output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
except Exception as e:
|
| 33 |
raise gr.Error(str(e))
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Create the Gradio interface
|
| 36 |
with gr.Blocks(title="FrameVis - Video Frame Visualizer") as demo:
|
| 37 |
gr.Markdown("""
|
| 38 |
# 🎬 FrameVis - Video Frame Visualizer
|
| 39 |
Upload a video to create a beautiful visualization of its frames. The tool will extract frames at regular intervals
|
| 40 |
+
and combine them into a single image.
|
| 41 |
""")
|
| 42 |
|
| 43 |
with gr.Row():
|
|
|
|
| 63 |
process_btn = gr.Button("Generate Visualization", variant="primary")
|
| 64 |
|
| 65 |
with gr.Column(scale=2):
|
| 66 |
+
# Output component
|
| 67 |
+
output_image = gr.Image(label="Visualization Result", height=300)
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# Handle processing
|
| 70 |
+
process_btn.click(
|
| 71 |
fn=process_video,
|
| 72 |
inputs=[
|
| 73 |
video_input,
|
|
|
|
| 79 |
average,
|
| 80 |
blur_amount
|
| 81 |
],
|
| 82 |
+
outputs=output_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
if __name__ == "__main__":
|