import gradio as gr from transformers import pipeline # Load small + free LLM generator = pipeline("text2text-generation", model="google/flan-t5-small") # --- Agent 1: Summarizer + Knowledge Graph Builder --- def doc_agent(user_text): # Step 1: Summarize summary_prompt = f"Summarize this in 3 lines: {user_text}" summary = generator(summary_prompt, max_length=80, do_sample=False)[0]['generated_text'] # Step 2: Build a "mini knowledge graph" (keywords as nodes) keyword_prompt = f"Extract 5 important keywords from this text: {user_text}" keywords = generator(keyword_prompt, max_length=40, do_sample=False)[0]['generated_text'] graph_nodes = [kw.strip() for kw in keywords.split(",") if kw.strip()] graph_repr = " β†’ ".join(graph_nodes) if graph_nodes else "No graph generated." return f"πŸ“„ Summary:\n{summary}\n\nπŸ•ΈοΈ Knowledge Graph:\n{graph_repr}" # --- Agent 2: Career Skill Recommender --- def career_agent(user_goal): # Step 1: Analyze career intent analysis_prompt = f"Identify skill gap for this career goal: {user_goal}" analysis = generator(analysis_prompt, max_length=50, do_sample=False)[0]['generated_text'] # Step 2: Recommend roadmap roadmap_prompt = f"Suggest a 3-step learning roadmap for: {user_goal}" roadmap = generator(roadmap_prompt, max_length=80, do_sample=False)[0]['generated_text'] return f"πŸ” Gap Analysis:\n{analysis}\n\nπŸ› οΈ Skill Roadmap:\n{roadmap}" # --- Combined Agent Controller --- def agentic_ai(user_input, mode): if mode == "Document Insight": return doc_agent(user_input) elif mode == "Career Roadmap": return career_agent(user_input) else: return "⚠️ Please choose a valid mode." # --- Demo UI --- demo = gr.Interface( fn=agentic_ai, inputs=[ gr.Textbox(lines=4, placeholder="Enter text or career goal..."), gr.Radio(["Document Insight", "Career Roadmap"], label="Choose Mode") ], outputs="text", title="🌐 Mini Agentic AI MVP", description=""" This smallest MVP demonstrates: - πŸ“„ Document Summarization - πŸ•ΈοΈ Knowledge Graph (mini keyword graph) - πŸ§‘β€πŸ’» Career Skill Gap Analysis - πŸ› οΈ Personalized 3-step Roadmap Built with free Hugging Face + Gradio. Optimized for AI Research use cases. """ ) if __name__ == "__main__": demo.launch()