Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
To create an image remixer with Gradio, where users can drag up to three images and provide a text prompt to generate a new image, we'll use a `diffusers` pipeline. Specifically, we'll use `stabilityai/stable-diffusion-xl-base-1.0` for text-to-image generation and `stabilityai/stable-diffusion-xl-refiner-1.0` for image-to-image generation.
|
| 2 |
+
|
| 3 |
+
Crucially, we will implement **ZeroGPU Ahead-of-Time (AoT) compilation** for the UNet components of both diffusion models. This is mandatory for GPU-dependent diffusion models on Hugging Face Spaces for significant performance improvements.
|
| 4 |
+
|
| 5 |
+
The application will be structured into multiple files for better organization:
|
| 6 |
+
|
| 7 |
+
* `app.py`: The main Gradio interface.
|
| 8 |
+
* `models.py`: Handles model loading, AoT compilation, and the core remixing logic.
|
| 9 |
+
* `requirements.txt`: Lists all Python dependencies.
|
| 10 |
+
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
### `app.py`
|
| 14 |
+
```python
|
| 15 |
+
import gradio as gr
|
| 16 |
+
from models import remix_images_inference # Import the inference function from models.py
|
| 17 |
+
|
| 18 |
+
def main():
|
| 19 |
+
with gr.Blocks(title="Image Remix with SDXL") as demo:
|
| 20 |
+
gr.HTML(
|
| 21 |
+
"""
|
| 22 |
+
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
| 23 |
+
<h1 style="font-weight: 900; font-size: 2.5em; margin-bottom: 0.5em;">
|
| 24 |
+
Image Remix with SDXL
|
| 25 |
+
</h1>
|
| 26 |
+
<p style="margin-bottom: 1em; font-size: 1.1em; color: #555;">
|
| 27 |
+
Drag and drop up to three images and provide a text prompt to remix them using Stable Diffusion XL.
|
| 28 |
+
If the first image is provided, it will be used as a base for image-to-image generation.
|
| 29 |
+
</p>
|
| 30 |
+
<p style="font-size: 0.9em; color: #777;">
|
| 31 |
+
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #4CAF50; text-decoration: none;">anycoder</a>
|
| 32 |
+
</p>
|
| 33 |
+
</div>
|
| 34 |
+
"""
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
with gr.Row():
|
| 38 |
+
with gr.Column(scale=1):
|
| 39 |
+
with gr.Group():
|
| 40 |
+
image_input_1 = gr.Image(
|
| 41 |
+
label="Image Input 1 (Base for Img2Img)",
|
| 42 |
+
type="pil",
|
| 43 |
+
height=256,
|
| 44 |
+
width=256,
|
| 45 |
+
image_mode="RGBA",
|
| 46 |
+
drop_threshold_height=200
|
| 47 |
+
)
|
| 48 |
+
image_input_2 = gr.Image(
|
| 49 |
+
label="Image Input 2 (Optional)",
|
| 50 |
+
type="pil",
|
| 51 |
+
height=256,
|
| 52 |
+
width=256,
|
| 53 |
+
image_mode="RGBA",
|
| 54 |
+
drop_threshold_height=200
|
| 55 |
+
)
|
| 56 |
+
image_input_3 = gr.Image(
|
| 57 |
+
label="Image Input 3 (Optional)",
|
| 58 |
+
type="pil",
|
| 59 |
+
height=256,
|
| 60 |
+
width=256,
|
| 61 |
+
image_mode="RGBA",
|
| 62 |
+
drop_threshold_height=200
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
prompt_input = gr.Textbox(
|
| 66 |
+
label="Remix Prompt",
|
| 67 |
+
placeholder="A vibrant abstract painting blending elements of nature and technology",
|
| 68 |
+
lines=2
|
| 69 |
+
)
|
| 70 |
+
remix_button = gr.Button("Remix Images", variant="primary")
|
| 71 |
+
|
| 72 |
+
with gr.Column(scale=2):
|
| 73 |
+
output_image = gr.Image(
|
| 74 |
+
label="Remixed Image",
|
| 75 |
+
type="pil",
|
| 76 |
+
interactive=False,
|
| 77 |
+
height=512,
|
| 78 |
+
width=512
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Define the interaction
|
| 82 |
+
remix_button.click(
|
| 83 |
+
fn=remix_images_inference,
|
| 84 |
+
inputs=[image_input_1, image_input_2, image_input_3, prompt_input],
|
| 85 |
+
outputs=output_image,
|
| 86 |
+
queue=True,
|
| 87 |
+
show_progress="full"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
gr.Examples(
|
| 91 |
+
examples=[
|
| 92 |
+
[
|
| 93 |
+
"https://www.kasandbox.org/programming-images/avatars/spunky-sam-headphones.png",
|
| 94 |
+
None,
|
| 95 |
+
None,
|
| 96 |
+
"a robot wearing headphones, futuristic, cyberpunk art style"
|
| 97 |
+
],
|
| 98 |
+
[
|
| 99 |
+
"https://gradio-docs-json.s3.us-west-2.amazonaws.com/base.png",
|
| 100 |
+
"https://gradio-docs-json.s3.us-west-2.amazonaws.com/buildings.png",
|
| 101 |
+
None,
|
| 102 |
+
"a serene landscape with ancient ruins, overgrown with lush vegetation, concept art, fantasy"
|
| 103 |
+
],
|
| 104 |
+
[
|
| 105 |
+
None,
|
| 106 |
+
None,
|
| 107 |
+
None,
|
| 108 |
+
"an astronaut riding a horse on the moon, cinematic, photorealistic"
|
| 109 |
+
]
|
| 110 |
+
],
|
| 111 |
+
inputs=[image_input_1, image_input_2, image_input_3, prompt_input],
|
| 112 |
+
outputs=output_image,
|
| 113 |
+
fn=remix_images_inference,
|
| 114 |
+
cache_examples=False, # Cache examples can be set to True if the inference is fast enough
|
| 115 |
+
run_on_click=True
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
demo.launch(enable_monitoring=True)
|
| 119 |
+
|
| 120 |
+
if __name__ == "__main__":
|
| 121 |
+
main()
|
| 122 |
+
```
|
| 123 |
+
|
| 124 |
+
### `models.py`
|
| 125 |
+
```python
|
| 126 |
+
import spaces
|
| 127 |
+
import torch
|
| 128 |
+
from diffusers import DiffusionPipeline, AutoPipelineForImage2Image
|
| 129 |
+
from PIL import Image
|
| 130 |
+
import numpy as np
|
| 131 |
+
import os
|
| 132 |
+
import gradio as gr
|
| 133 |
+
|
| 134 |
+
# Set a cache directory for models if not already set, for smoother experience on Spaces
|
| 135 |
+
os.environ["HF_HOME"] = os.getenv("HF_HOME", "/data/hf_cache")
|
| 136 |
+
|
| 137 |
+
MODEL_ID_TEXT2IMG = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 138 |
+
MODEL_ID_IMG2IMG = "stabilityai/stable-diffusion-xl-refiner-1.0" # SDXL Refiner for img2img
|
| 139 |
+
|
| 140 |
+
# Load models outside the GPU context first. Using fp16 for faster inference.
|
| 141 |
+
print("Loading models (this may take a moment)...")
|
| 142 |
+
pipe_t2i_raw = DiffusionPipeline.from_pretrained(MODEL_ID_TEXT2IMG, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
| 143 |
+
pipe_i2i_raw = AutoPipelineForImage2Image.from_pretrained(MODEL_ID_IMG2IMG, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
| 144 |
+
print("Models loaded.")
|
| 145 |
+
|
| 146 |
+
def prepare_unet_dummy_inputs(pipe, resolution=(1024, 1024), batch_size=2, dtype=torch.float16, device="cuda"):
|
| 147 |
+
"""
|
| 148 |
+
Prepares dummy inputs for SDXL's UNet for AoT compilation.
|
| 149 |
+
"""
|
| 150 |
+
height, width = resolution
|
| 151 |
+
latent_height = height // 8
|
| 152 |
+
latent_width = width // 8
|
| 153 |
+
|
| 154 |
+
dummy_latents = torch.randn(batch_size, pipe.unet.config.in_channels, latent_height, latent_width, device=device, dtype=dtype)
|
| 155 |
+
dummy_timestep = torch.tensor(1.0, device=device, dtype=dtype)
|
| 156 |
+
|
| 157 |
+
dummy_encoder_hidden_states = torch.randn(batch_size, 77, pipe.unet.config.cross_attention_dim, device=device, dtype=dtype)
|
| 158 |
+
|
| 159 |
+
# added_cond_kwargs contains text_embeds and time_ids for SDXL UNet
|
| 160 |
+
dummy_text_embeds = torch.randn(batch_size, pipe.unet.config.addition_embed_type_num_vector_context_tokens, device=device, dtype=dtype)
|
| 161 |
+
dummy_time_ids = torch.randn(batch_size, 6, device=device, dtype=dtype)
|
| 162 |
+
|
| 163 |
+
unet_inputs = {
|
| 164 |
+
"sample": dummy_latents,
|
| 165 |
+
"timestep": dummy_timestep,
|
| 166 |
+
"encoder_hidden_states": dummy_encoder_hidden_states,
|
| 167 |
+
"added_cond_kwargs": {
|
| 168 |
+
"text_embeds": dummy_text_embeds,
|
| 169 |
+
"time_ids": dummy_time_ids,
|
| 170 |
+
}
|
| 171 |
+
}
|
| 172 |
+
return unet_inputs
|
| 173 |
+
|
| 174 |
+
@spaces.GPU(duration=1500) # Use max duration for compilation at startup
|
| 175 |
+
def compile_optimized_models():
|
| 176 |
+
"""
|
| 177 |
+
Compiles the UNet components of both text-to-image and image-to-image pipelines
|
| 178 |
+
using Ahead-of-Time (AoT) compilation for performance optimization.
|
| 179 |
+
"""
|
| 180 |
+
print("Moving models to CUDA...")
|
| 181 |
+
pipe_t2i_raw.to("cuda")
|
| 182 |
+
pipe_i2i_raw.to("cuda")
|
| 183 |
+
print("Models moved to CUDA.")
|
| 184 |
+
|
| 185 |
+
# Compile UNet for text2img pipeline
|
| 186 |
+
print("Compiling Text2Image UNet...")
|
| 187 |
+
dummy_inputs_t2i = prepare_unet_dummy_inputs(pipe_t2i_raw)
|
| 188 |
+
with spaces.aoti_capture(pipe_t2i_raw.unet, **dummy_inputs_t2i) as call_t2i:
|
| 189 |
+
pass # Inputs are passed directly to aoti_capture for explicit tracing
|
| 190 |
+
|
| 191 |
+
exported_t2i_unet = torch.export.export(pipe_t2i_raw.unet, args=call_t2i.args, kwargs=call_t2i.kwargs)
|
| 192 |
+
compiled_t2i_unet = spaces.aoti_compile(exported_t2i_unet)
|
| 193 |
+
spaces.aoti_apply(compiled_t2i_unet, pipe_t2i_raw.unet)
|
| 194 |
+
print("Text2Image UNet compiled.")
|
| 195 |
+
|
| 196 |
+
# Compile UNet for img2img (refiner) pipeline
|
| 197 |
+
print("Compiling Image2Image UNet...")
|
| 198 |
+
dummy_inputs_i2i = prepare_unet_dummy_inputs(pipe_i2i_raw)
|
| 199 |
+
with spaces.aoti_capture(pipe_i2i_raw.unet, **dummy_inputs_i2i) as call_i2i:
|
| 200 |
+
pass # Inputs are passed directly to aoti_capture for explicit tracing
|
| 201 |
+
|
| 202 |
+
exported_i2i_unet = torch.export.export(pipe_i2i_raw.unet, args=call_i2i.args, kwargs=call_i2i.kwargs)
|
| 203 |
+
compiled_i2i_unet = spaces.aoti_compile(exported_i2i_unet)
|
| 204 |
+
spaces.aoti_apply(compiled_i2i_unet, pipe_i2i_raw.unet)
|
| 205 |
+
print("Image2Image UNet compiled.")
|
| 206 |
+
|
| 207 |
+
# Return the now-compiled pipelines
|
| 208 |
+
return pipe_t2i_raw, pipe_i2i_raw
|
| 209 |
+
|
| 210 |
+
# Execute compilation during startup
|
| 211 |
+
pipe_text2img, pipe_img2img = compile_optimized_models()
|
| 212 |
+
|
| 213 |
+
@spaces.GPU(duration=120) # Allocate GPU for inference, max 120 seconds
|
| 214 |
+
def remix_images_inference(image1: Image.Image | None, image2: Image.Image | None, image3: Image.Image | None, prompt: str) -> Image.Image:
|
| 215 |
+
"""
|
| 216 |
+
Remixes images based on a text prompt using a diffusion model.
|
| 217 |
+
If image1 is provided, it uses an image-to-image pipeline for remixing.
|
| 218 |
+
Otherwise, it falls back to a text-to-image pipeline.
|
| 219 |
+
|
| 220 |
+
Args:
|
| 221 |
+
image1 (Image.Image | None): The first input image. If provided, used as base for img2img.
|
| 222 |
+
image2 (Image.Image | None): The second input image (currently influences prompt slightly).
|
| 223 |
+
image3 (Image.Image | None): The third input image (currently influences prompt slightly).
|
| 224 |
+
prompt (str): The text prompt to guide the remixing.
|
| 225 |
+
|
| 226 |
+
Returns:
|
| 227 |
+
Image.Image: The remixed image.
|
| 228 |
+
"""
|
| 229 |
+
if not prompt:
|
| 230 |
+
raise gr.Error("Remix prompt cannot be empty!")
|
| 231 |
+
|
| 232 |
+
output_resolution = (1024, 1024) # Fixed resolution for compiled models
|
| 233 |
+
|
| 234 |
+
# Build a more descriptive prompt if additional images are provided,
|
| 235 |
+
# to somewhat acknowledge their presence in the "remix".
|
| 236 |
+
extra_prompt_info = ""
|
| 237 |
+
if image2 is not None and image3 is not None:
|
| 238 |
+
extra_prompt_info = ", incorporating elements from other images"
|
| 239 |
+
elif image2 is not None or image3 is not None:
|
| 240 |
+
extra_prompt_info = ", with subtle influences from another image"
|
| 241 |
+
|
| 242 |
+
full_prompt = f"{prompt}{extra_prompt_info}"
|
| 243 |
+
print(f"Full prompt for generation: {full_prompt}")
|
| 244 |
+
|
| 245 |
+
if image1 is not None:
|
| 246 |
+
# Resize the input image to the target resolution for img2img
|
| 247 |
+
input_image_resized = image1.resize(output_resolution, Image.LANCZOS)
|
| 248 |
+
|
| 249 |
+
print("Performing image-to-image remixing...")
|
| 250 |
+
generated_image = pipe_img2img(
|
| 251 |
+
prompt=full_prompt,
|
| 252 |
+
image=input_image_resized,
|
| 253 |
+
strength=0.75, # High strength allows significant transformation from original image
|
| 254 |
+
guidance_scale=8.0,
|
| 255 |
+
num_inference_steps=50,
|
| 256 |
+
width=output_resolution[0],
|
| 257 |
+
height=output_resolution[1],
|
| 258 |
+
).images[0]
|
| 259 |
+
else:
|
| 260 |
+
print("Performing text-to-image generation...")
|
| 261 |
+
generated_image = pipe_text2img(
|
| 262 |
+
prompt=full_prompt,
|
| 263 |
+
height=output_resolution[0],
|
| 264 |
+
width=output_resolution[1],
|
| 265 |
+
guidance_scale=8.0,
|
| 266 |
+
num_inference_steps=50
|
| 267 |
+
).images[0]
|
| 268 |
+
|
| 269 |
+
return generated_image
|
| 270 |
+
|
| 271 |
+
```
|
| 272 |
+
|
| 273 |
+
### `requirements.txt`
|
| 274 |
+
```
|
| 275 |
+
gradio
|
| 276 |
+
torch
|
| 277 |
+
diffusers==0.28.0
|
| 278 |
+
transformers==4.41.2
|
| 279 |
+
accelerate
|
| 280 |
+
Pillow
|
| 281 |
+
xformers
|
| 282 |
+
torchvision
|
| 283 |
+
safetensors
|
| 284 |
+
```
|