- app.py +4 -0
- app_test.py +4 -0
app.py
CHANGED
|
@@ -340,14 +340,18 @@ def construction_layout():
|
|
| 340 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
| 341 |
json_example = inputs
|
| 342 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
|
|
|
| 343 |
inputs = tokenizer(
|
| 344 |
input_intension, return_tensors="pt"
|
| 345 |
).to(model.lm.device)
|
|
|
|
| 346 |
|
| 347 |
stopping_criteria = StoppingCriteriaList()
|
| 348 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
| 349 |
|
|
|
|
| 350 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
|
|
|
| 351 |
inputs_length = inputs['input_ids'].shape[1]
|
| 352 |
outputs = outputs[:, inputs_length:]
|
| 353 |
|
|
|
|
| 340 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
| 341 |
json_example = inputs
|
| 342 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
| 343 |
+
print("tokenizer1")
|
| 344 |
inputs = tokenizer(
|
| 345 |
input_intension, return_tensors="pt"
|
| 346 |
).to(model.lm.device)
|
| 347 |
+
print("tokenizer2")
|
| 348 |
|
| 349 |
stopping_criteria = StoppingCriteriaList()
|
| 350 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
| 351 |
|
| 352 |
+
print("lm1")
|
| 353 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
| 354 |
+
print("lm2")
|
| 355 |
inputs_length = inputs['input_ids'].shape[1]
|
| 356 |
outputs = outputs[:, inputs_length:]
|
| 357 |
|
app_test.py
CHANGED
|
@@ -340,14 +340,18 @@ def construction_layout():
|
|
| 340 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
| 341 |
json_example = inputs
|
| 342 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
|
|
|
| 343 |
inputs = tokenizer(
|
| 344 |
input_intension, return_tensors="pt"
|
| 345 |
).to(model.lm.device)
|
|
|
|
| 346 |
|
| 347 |
stopping_criteria = StoppingCriteriaList()
|
| 348 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
| 349 |
|
|
|
|
| 350 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
|
|
|
| 351 |
inputs_length = inputs['input_ids'].shape[1]
|
| 352 |
outputs = outputs[:, inputs_length:]
|
| 353 |
|
|
|
|
| 340 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
| 341 |
json_example = inputs
|
| 342 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
| 343 |
+
print("tokenizer1")
|
| 344 |
inputs = tokenizer(
|
| 345 |
input_intension, return_tensors="pt"
|
| 346 |
).to(model.lm.device)
|
| 347 |
+
print("tokenizer2")
|
| 348 |
|
| 349 |
stopping_criteria = StoppingCriteriaList()
|
| 350 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
| 351 |
|
| 352 |
+
print("lm1")
|
| 353 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
| 354 |
+
print("lm2")
|
| 355 |
inputs_length = inputs['input_ids'].shape[1]
|
| 356 |
outputs = outputs[:, inputs_length:]
|
| 357 |
|