generator device + seed_everything + custom_pipeline
Browse files- app.py +39 -62
- custom_pipeline.py +348 -67
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -21,6 +21,7 @@ import base64
|
|
| 21 |
import os
|
| 22 |
import time
|
| 23 |
import re
|
|
|
|
| 24 |
|
| 25 |
from transformers import (
|
| 26 |
AutoTokenizer,
|
|
@@ -37,6 +38,15 @@ class StopAtSpecificTokenCriteria(StoppingCriteria):
|
|
| 37 |
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
| 38 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 39 |
return input_ids[0][-1].detach().cpu().numpy() in self.token_id_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
def ensure_space_after_period(input_string):
|
| 42 |
# 去除多余的空格
|
|
@@ -232,13 +242,8 @@ def construction_all():
|
|
| 232 |
global model
|
| 233 |
global quantizer
|
| 234 |
global tokenizer
|
| 235 |
-
global pipeline
|
| 236 |
-
global transp_vae
|
| 237 |
from modeling_crello import CrelloModel, CrelloModelConfig
|
| 238 |
from quantizer import get_quantizer
|
| 239 |
-
from custom_model_mmdit import CustomFluxTransformer2DModel
|
| 240 |
-
from custom_model_transp_vae import AutoencoderKLTransformerTraining as CustomVAE
|
| 241 |
-
from custom_pipeline import CustomFluxPipelineCfg
|
| 242 |
|
| 243 |
params_dict = {
|
| 244 |
"input_model": "/openseg_blob/v-sirui/temporary/2024-02-21/Layout_train/COLEv2/Design_LLM/checkpoint/Meta-Llama-3-8B",
|
|
@@ -314,13 +319,28 @@ def construction_all():
|
|
| 314 |
for token in added_special_tokens_list:
|
| 315 |
quantizer.additional_special_tokens.add(token)
|
| 316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
transformer = CustomFluxTransformer2DModel.from_pretrained(
|
| 318 |
"WYBar/ART_test_weights",
|
| 319 |
subfolder="fused_transformer",
|
| 320 |
torch_dtype=torch.bfloat16,
|
| 321 |
-
|
| 322 |
)
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
transp_vae = CustomVAE.from_pretrained(
|
| 325 |
"WYBar/ART_test_weights",
|
| 326 |
subfolder="custom_vae",
|
|
@@ -328,16 +348,7 @@ def construction_all():
|
|
| 328 |
use_safetensors=True,
|
| 329 |
# cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir"
|
| 330 |
)
|
| 331 |
-
|
| 332 |
-
token = os.environ.get("HF_TOKEN")
|
| 333 |
-
pipeline = CustomFluxPipelineCfg.from_pretrained(
|
| 334 |
-
"black-forest-labs/FLUX.1-dev",
|
| 335 |
-
transformer=transformer,
|
| 336 |
-
torch_dtype=torch.bfloat16,
|
| 337 |
-
token=token,
|
| 338 |
-
# cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir"
|
| 339 |
-
).to("cuda")
|
| 340 |
-
pipeline.enable_model_cpu_offload(gpu_id=0) # Save GPU memory
|
| 341 |
|
| 342 |
print(f"before .to(device):{model.device} {model.lm.device} {pipeline.device}")
|
| 343 |
model = model.to("cuda")
|
|
@@ -421,6 +432,7 @@ def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps,
|
|
| 421 |
num_layers=len(validation_box),
|
| 422 |
guidance_scale=4.0,
|
| 423 |
num_inference_steps=inference_steps,
|
|
|
|
| 424 |
transparent_decoder=transp_vae,
|
| 425 |
true_gs=true_gs
|
| 426 |
)
|
|
@@ -440,25 +452,29 @@ def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps,
|
|
| 440 |
|
| 441 |
def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, inference_steps, pipeline, transp_vae):
|
| 442 |
print(f"svg_test_one_sample {model.device} {model.lm.device} {pipeline.device}")
|
| 443 |
-
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 444 |
try:
|
| 445 |
-
|
|
|
|
|
|
|
|
|
|
| 446 |
except Exception as e:
|
| 447 |
return [f"Error parsing validation_box: {e}"]
|
|
|
|
| 448 |
if not isinstance(validation_box, list) or not all(isinstance(t, tuple) and len(t) == 4 for t in validation_box):
|
| 449 |
return ["validation_box must be a list of tuples, each of length 4."]
|
| 450 |
-
|
| 451 |
validation_box = adjust_validation_box(validation_box)
|
| 452 |
|
| 453 |
print("result_images = test_one_sample")
|
| 454 |
result_images = test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae)
|
| 455 |
print("after result_images = test_one_sample")
|
| 456 |
svg_img = pngs_to_svg(result_images[1:])
|
| 457 |
-
|
| 458 |
svg_file_path = './image.svg'
|
| 459 |
os.makedirs(os.path.dirname(svg_file_path), exist_ok=True)
|
| 460 |
with open(svg_file_path, 'w', encoding='utf-8') as f:
|
| 461 |
-
f.write(svg_img)
|
| 462 |
|
| 463 |
if not isinstance(result_images, list):
|
| 464 |
raise TypeError("result_images 必须是一个列表")
|
|
@@ -475,7 +491,7 @@ def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, in
|
|
| 475 |
def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
| 476 |
print(f"precess_svg {model.device} {model.lm.device} {pipeline.device}")
|
| 477 |
result_images = []
|
| 478 |
-
result_images, svg_file_path =
|
| 479 |
# result_images, svg_file_path = gradio_test_one_sample_partial(text_input, tuple_input, seed, true_gs, inference_steps)
|
| 480 |
|
| 481 |
url, unique_filename = upload_to_github(file_path=svg_file_path)
|
|
@@ -543,45 +559,6 @@ def main():
|
|
| 543 |
construction_all()
|
| 544 |
print(f"after construction_all:{model.device} {model.lm.device} {pipeline.device}")
|
| 545 |
|
| 546 |
-
# def process_preddate(intention, generate_method='v1'):
|
| 547 |
-
# list_box = [(0, 0, 512, 512), (0, 0, 512, 512), (136, 184, 512, 512), (144, 0, 512, 512), (0, 0, 328, 136), (160, 112, 512, 360), (168, 112, 512, 360), (40, 232, 112, 296), (32, 88, 248, 176), (48, 424, 144, 448), (48, 464, 144, 488), (240, 464, 352, 488), (384, 464, 488, 488), (48, 480, 144, 504), (240, 480, 360, 504), (456, 0, 512, 56), (0, 0, 56, 40), (440, 0, 512, 40), (0, 24, 48, 88), (48, 168, 168, 240)]
|
| 548 |
-
# wholecaption = "Design an engaging and vibrant recruitment advertisement for our company. The image should feature three animated characters in a modern cityscape, depicting a dynamic and collaborative work environment. Incorporate a light bulb graphic with a question mark, symbolizing innovation, creativity, and problem-solving. Use bold text to announce \"WE ARE RECRUITING\" and provide the company's social media handle \"@reallygreatsite\" and a contact phone number \"+123-456-7890\" for interested individuals. The overall design should be playful and youthful, attracting potential recruits who are innovative and eager to contribute to a lively team."
|
| 549 |
-
# json_file = "/home/wyb/openseg_blob/v-yanbin/GradioDemo/LLM-For-Layout-Planning/inference_test.json"
|
| 550 |
-
# return wholecaption, str(list_box), json_file
|
| 551 |
-
|
| 552 |
-
# pipeline, transp_vae = construction()
|
| 553 |
-
|
| 554 |
-
# gradio_test_one_sample_partial = partial(
|
| 555 |
-
# svg_test_one_sample,
|
| 556 |
-
# pipeline=pipeline,
|
| 557 |
-
# transp_vae=transp_vae,
|
| 558 |
-
# )
|
| 559 |
-
|
| 560 |
-
# def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
| 561 |
-
# print("precess_svg")
|
| 562 |
-
# result_images = []
|
| 563 |
-
# result_images, svg_file_path = svg_test_one_sample(text_input, tuple_input, seed, true_gs, inference_steps, pipeline=pipeline, transp_vae=transp_vae)
|
| 564 |
-
# # result_images, svg_file_path = gradio_test_one_sample_partial(text_input, tuple_input, seed, true_gs, inference_steps)
|
| 565 |
-
|
| 566 |
-
# url, unique_filename = upload_to_github(file_path=svg_file_path)
|
| 567 |
-
# unique_filename = f'{unique_filename}'
|
| 568 |
-
|
| 569 |
-
# if url != None:
|
| 570 |
-
# print(f"File uploaded to: {url}")
|
| 571 |
-
# svg_editor = f"""
|
| 572 |
-
# <iframe src="https://svgedit.netlify.app/editor/index.html?\
|
| 573 |
-
# storagePrompt=false&url={url}" \
|
| 574 |
-
# width="100%", height="800px"></iframe>
|
| 575 |
-
# """
|
| 576 |
-
# else:
|
| 577 |
-
# print('upload_to_github FAILED!')
|
| 578 |
-
# svg_editor = f"""
|
| 579 |
-
# <iframe src="https://svgedit.netlify.app/editor/index.html" \
|
| 580 |
-
# width="100%", height="800px"></iframe>
|
| 581 |
-
# """
|
| 582 |
-
|
| 583 |
-
# return result_images, svg_file_path, svg_editor
|
| 584 |
-
|
| 585 |
def one_click_generate(intention_input, temperature, top_p, seed, true_gs, inference_steps):
|
| 586 |
# 首先调用process_preddate
|
| 587 |
list_box_output, intention_input, list_box_output = process_preddate(intention_input, temperature, top_p)
|
|
|
|
| 21 |
import os
|
| 22 |
import time
|
| 23 |
import re
|
| 24 |
+
import random
|
| 25 |
|
| 26 |
from transformers import (
|
| 27 |
AutoTokenizer,
|
|
|
|
| 38 |
@add_start_docstrings(STOPPING_CRITERIA_INPUTS_DOCSTRING)
|
| 39 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 40 |
return input_ids[0][-1].detach().cpu().numpy() in self.token_id_list
|
| 41 |
+
|
| 42 |
+
def seed_everything(seed):
|
| 43 |
+
random.seed(seed)
|
| 44 |
+
np.random.seed(seed)
|
| 45 |
+
torch.manual_seed(seed)
|
| 46 |
+
if torch.cuda.is_available():
|
| 47 |
+
torch.cuda.manual_seed(seed)
|
| 48 |
+
torch.cuda.manual_seed_all(seed)
|
| 49 |
+
torch.backends.cudnn.deterministic = True
|
| 50 |
|
| 51 |
def ensure_space_after_period(input_string):
|
| 52 |
# 去除多余的空格
|
|
|
|
| 242 |
global model
|
| 243 |
global quantizer
|
| 244 |
global tokenizer
|
|
|
|
|
|
|
| 245 |
from modeling_crello import CrelloModel, CrelloModelConfig
|
| 246 |
from quantizer import get_quantizer
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
params_dict = {
|
| 249 |
"input_model": "/openseg_blob/v-sirui/temporary/2024-02-21/Layout_train/COLEv2/Design_LLM/checkpoint/Meta-Llama-3-8B",
|
|
|
|
| 319 |
for token in added_special_tokens_list:
|
| 320 |
quantizer.additional_special_tokens.add(token)
|
| 321 |
|
| 322 |
+
global pipeline
|
| 323 |
+
global transp_vae
|
| 324 |
+
seed_everything(42)
|
| 325 |
+
from custom_model_mmdit import CustomFluxTransformer2DModel
|
| 326 |
+
from custom_pipeline import CustomFluxPipelineCfg
|
| 327 |
+
|
| 328 |
transformer = CustomFluxTransformer2DModel.from_pretrained(
|
| 329 |
"WYBar/ART_test_weights",
|
| 330 |
subfolder="fused_transformer",
|
| 331 |
torch_dtype=torch.bfloat16,
|
| 332 |
+
cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir"
|
| 333 |
)
|
| 334 |
+
|
| 335 |
+
pipeline = CustomFluxPipelineCfg.from_pretrained(
|
| 336 |
+
"black-forest-labs/FLUX.1-dev",
|
| 337 |
+
transformer=transformer,
|
| 338 |
+
torch_dtype=torch.bfloat16,
|
| 339 |
+
cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir",
|
| 340 |
+
).to("cuda")
|
| 341 |
+
# pipeline.enable_model_cpu_offload(gpu_id=0) # save vram
|
| 342 |
+
|
| 343 |
+
from custom_model_transp_vae import AutoencoderKLTransformerTraining as CustomVAE
|
| 344 |
transp_vae = CustomVAE.from_pretrained(
|
| 345 |
"WYBar/ART_test_weights",
|
| 346 |
subfolder="custom_vae",
|
|
|
|
| 348 |
use_safetensors=True,
|
| 349 |
# cache_dir="/openseg_blob/v-yanbin/GradioDemo/cache_dir"
|
| 350 |
)
|
| 351 |
+
transp_vae.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 352 |
|
| 353 |
print(f"before .to(device):{model.device} {model.lm.device} {pipeline.device}")
|
| 354 |
model = model.to("cuda")
|
|
|
|
| 432 |
num_layers=len(validation_box),
|
| 433 |
guidance_scale=4.0,
|
| 434 |
num_inference_steps=inference_steps,
|
| 435 |
+
sdxl_vae=transp_vae,
|
| 436 |
transparent_decoder=transp_vae,
|
| 437 |
true_gs=true_gs
|
| 438 |
)
|
|
|
|
| 452 |
|
| 453 |
def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, inference_steps, pipeline, transp_vae):
|
| 454 |
print(f"svg_test_one_sample {model.device} {model.lm.device} {pipeline.device}")
|
| 455 |
+
# generator = torch.Generator().manual_seed(seed)
|
| 456 |
+
generator = torch.Generator(device=torch.device("cuda", index=0)).manual_seed(seed)
|
| 457 |
try:
|
| 458 |
+
if isinstance(validation_box_str, (list, tuple)):
|
| 459 |
+
validation_box = validation_box_str
|
| 460 |
+
else:
|
| 461 |
+
validation_box = ast.literal_eval(validation_box_str)
|
| 462 |
except Exception as e:
|
| 463 |
return [f"Error parsing validation_box: {e}"]
|
| 464 |
+
|
| 465 |
if not isinstance(validation_box, list) or not all(isinstance(t, tuple) and len(t) == 4 for t in validation_box):
|
| 466 |
return ["validation_box must be a list of tuples, each of length 4."]
|
|
|
|
| 467 |
validation_box = adjust_validation_box(validation_box)
|
| 468 |
|
| 469 |
print("result_images = test_one_sample")
|
| 470 |
result_images = test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae)
|
| 471 |
print("after result_images = test_one_sample")
|
| 472 |
svg_img = pngs_to_svg(result_images[1:])
|
| 473 |
+
|
| 474 |
svg_file_path = './image.svg'
|
| 475 |
os.makedirs(os.path.dirname(svg_file_path), exist_ok=True)
|
| 476 |
with open(svg_file_path, 'w', encoding='utf-8') as f:
|
| 477 |
+
f.write(svg_img)
|
| 478 |
|
| 479 |
if not isinstance(result_images, list):
|
| 480 |
raise TypeError("result_images 必须是一个列表")
|
|
|
|
| 491 |
def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
| 492 |
print(f"precess_svg {model.device} {model.lm.device} {pipeline.device}")
|
| 493 |
result_images = []
|
| 494 |
+
result_images, svg_file_path = gradio_test_one_sample(text_input, tuple_input, seed, true_gs, inference_steps, pipeline=pipeline, transp_vae=transp_vae)
|
| 495 |
# result_images, svg_file_path = gradio_test_one_sample_partial(text_input, tuple_input, seed, true_gs, inference_steps)
|
| 496 |
|
| 497 |
url, unique_filename = upload_to_github(file_path=svg_file_path)
|
|
|
|
| 559 |
construction_all()
|
| 560 |
print(f"after construction_all:{model.device} {model.lm.device} {pipeline.device}")
|
| 561 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
def one_click_generate(intention_input, temperature, top_p, seed, true_gs, inference_steps):
|
| 563 |
# 首先调用process_preddate
|
| 564 |
list_box_output, intention_input, list_box_output = process_preddate(intention_input, temperature, top_p)
|
custom_pipeline.py
CHANGED
|
@@ -1,16 +1,18 @@
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
|
|
|
| 2 |
from typing import Any, Callable, Dict, List, Optional, Union
|
| 3 |
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
|
| 7 |
-
from diffusers.utils.torch_utils import randn_tensor
|
| 8 |
from diffusers.utils import is_torch_xla_available, logging
|
| 9 |
-
from diffusers.
|
| 10 |
-
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxPipeline
|
| 11 |
|
| 12 |
if is_torch_xla_available():
|
| 13 |
import torch_xla.core.xla_model as xm # type: ignore
|
|
|
|
| 14 |
XLA_AVAILABLE = True
|
| 15 |
else:
|
| 16 |
XLA_AVAILABLE = False
|
|
@@ -55,7 +57,6 @@ def _get_clip_prompt_embeds(
|
|
| 55 |
|
| 56 |
return prompt_embeds
|
| 57 |
|
| 58 |
-
|
| 59 |
def _get_t5_prompt_embeds(
|
| 60 |
tokenizer,
|
| 61 |
text_encoder,
|
|
@@ -111,6 +112,7 @@ def encode_prompt(
|
|
| 111 |
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 112 |
prompt_2 = prompt_2 or prompt
|
| 113 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
| 114 |
|
| 115 |
# We only use the pooled prompt output from the CLIPTextModel
|
| 116 |
pooled_prompt_embeds = _get_clip_prompt_embeds(
|
|
@@ -469,73 +471,328 @@ class CustomFluxPipeline(FluxPipeline):
|
|
| 469 |
return FluxPipelineOutput(images=image), result_list, vis_list
|
| 470 |
|
| 471 |
|
| 472 |
-
class CustomFluxPipelineCfg(
|
| 473 |
|
| 474 |
-
@
|
| 475 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
-
|
| 488 |
-
x1, y1, x2, y2 = x1 // 16, y1 // 16, x2 // 16, y2 // 16
|
| 489 |
-
latent_image_ids = latent_image_ids[y1:y2, x1:x2, :]
|
| 490 |
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
|
|
|
| 495 |
|
| 496 |
-
|
|
|
|
| 497 |
|
| 498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
-
|
|
|
|
|
|
|
| 501 |
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
list_layer_box,
|
| 510 |
-
dtype,
|
| 511 |
-
device,
|
| 512 |
-
generator,
|
| 513 |
-
latents=None,
|
| 514 |
-
):
|
| 515 |
-
height = 2 * (int(height) // self.vae_scale_factor)
|
| 516 |
-
width = 2 * (int(width) // self.vae_scale_factor)
|
| 517 |
|
| 518 |
-
|
| 519 |
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 523 |
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
|
| 532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
|
| 534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
|
| 536 |
@torch.no_grad()
|
| 537 |
def __call__(
|
| 538 |
self,
|
|
|
|
|
|
|
| 539 |
prompt: Union[str, List[str]] = None,
|
| 540 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 541 |
validation_box: List[tuple] = None,
|
|
@@ -557,6 +814,7 @@ class CustomFluxPipelineCfg(FluxPipeline):
|
|
| 557 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 558 |
max_sequence_length: int = 512,
|
| 559 |
num_layers: int = 5,
|
|
|
|
| 560 |
transparent_decoder: nn.Module = None,
|
| 561 |
):
|
| 562 |
r"""
|
|
@@ -703,9 +961,22 @@ class CustomFluxPipelineCfg(FluxPipeline):
|
|
| 703 |
latents,
|
| 704 |
)
|
| 705 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 706 |
# 5. Prepare timesteps
|
| 707 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 708 |
-
image_seq_len = latent_image_ids.shape[0]
|
| 709 |
mu = calculate_shift(
|
| 710 |
image_seq_len,
|
| 711 |
self.scheduler.config.base_image_seq_len,
|
|
@@ -772,6 +1043,16 @@ class CustomFluxPipelineCfg(FluxPipeline):
|
|
| 772 |
latents_dtype = latents.dtype
|
| 773 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 774 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 775 |
if latents.dtype != latents_dtype:
|
| 776 |
if torch.backends.mps.is_available():
|
| 777 |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
@@ -794,12 +1075,12 @@ class CustomFluxPipelineCfg(FluxPipeline):
|
|
| 794 |
xm.mark_step()
|
| 795 |
|
| 796 |
# create a grey latent
|
| 797 |
-
bs,
|
| 798 |
|
| 799 |
-
pixel_grey = torch.zeros(size=(bs*
|
| 800 |
latent_grey = self.vae.encode(pixel_grey).latent_dist.sample()
|
| 801 |
latent_grey = (latent_grey - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 802 |
-
latent_grey = latent_grey.view(bs,
|
| 803 |
|
| 804 |
# fill in the latents
|
| 805 |
for layer_idx in range(latent_grey.shape[1]):
|
|
@@ -815,22 +1096,22 @@ class CustomFluxPipelineCfg(FluxPipeline):
|
|
| 815 |
|
| 816 |
else:
|
| 817 |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 818 |
-
latents = latents.reshape(bs *
|
| 819 |
latents_segs = torch.split(latents, 16, dim=0) ### split latents by 16 to avoid odd purple output
|
| 820 |
image_segs = [self.vae.decode(latents_seg, return_dict=False)[0] for latents_seg in latents_segs]
|
| 821 |
image = torch.cat(image_segs, dim=0)
|
| 822 |
-
if
|
| 823 |
-
|
| 824 |
|
| 825 |
-
decoded_fg, decoded_alpha =
|
| 826 |
-
decoded_alpha = (decoded_alpha + 1.0) / 2.0
|
| 827 |
-
decoded_alpha = torch.clamp(decoded_alpha, min=0.0, max=1.0).permute(0, 2, 3, 1)
|
| 828 |
|
| 829 |
decoded_fg = (decoded_fg + 1.0) / 2.0
|
| 830 |
-
decoded_fg = torch.clamp(decoded_fg, min=0.0, max=1.0).permute(0, 2, 3, 1)
|
| 831 |
|
| 832 |
vis_list = None
|
| 833 |
-
png = torch.cat([decoded_fg, decoded_alpha], dim=3)
|
| 834 |
result_list = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
|
| 835 |
else:
|
| 836 |
result_list, vis_list = None, None
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
import numpy as np
|
| 4 |
+
import math
|
| 5 |
from typing import Any, Callable, Dict, List, Optional, Union
|
| 6 |
|
| 7 |
+
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps, FluxPipeline
|
| 8 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 9 |
|
|
|
|
| 10 |
from diffusers.utils import is_torch_xla_available, logging
|
| 11 |
+
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
| 12 |
|
| 13 |
if is_torch_xla_available():
|
| 14 |
import torch_xla.core.xla_model as xm # type: ignore
|
| 15 |
+
|
| 16 |
XLA_AVAILABLE = True
|
| 17 |
else:
|
| 18 |
XLA_AVAILABLE = False
|
|
|
|
| 57 |
|
| 58 |
return prompt_embeds
|
| 59 |
|
|
|
|
| 60 |
def _get_t5_prompt_embeds(
|
| 61 |
tokenizer,
|
| 62 |
text_encoder,
|
|
|
|
| 112 |
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 113 |
prompt_2 = prompt_2 or prompt
|
| 114 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 115 |
+
batch_size = len(prompt)
|
| 116 |
|
| 117 |
# We only use the pooled prompt output from the CLIPTextModel
|
| 118 |
pooled_prompt_embeds = _get_clip_prompt_embeds(
|
|
|
|
| 471 |
return FluxPipelineOutput(images=image), result_list, vis_list
|
| 472 |
|
| 473 |
|
| 474 |
+
class CustomFluxPipelineCfg(CustomFluxPipeline):
|
| 475 |
|
| 476 |
+
@torch.no_grad()
|
| 477 |
+
def __call__(
|
| 478 |
+
self,
|
| 479 |
+
prompt: Union[str, List[str]] = None,
|
| 480 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 481 |
+
validation_box: List[tuple] = None,
|
| 482 |
+
height: Optional[int] = None,
|
| 483 |
+
width: Optional[int] = None,
|
| 484 |
+
num_inference_steps: int = 28,
|
| 485 |
+
timesteps: List[int] = None,
|
| 486 |
+
guidance_scale: float = 3.5,
|
| 487 |
+
true_gs: float = 3.5,
|
| 488 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 489 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 490 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 491 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 492 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 493 |
+
output_type: Optional[str] = "pil",
|
| 494 |
+
return_dict: bool = True,
|
| 495 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 496 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 497 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 498 |
+
max_sequence_length: int = 512,
|
| 499 |
+
num_layers: int = 5,
|
| 500 |
+
sdxl_vae: nn.Module = None,
|
| 501 |
+
transparent_decoder: nn.Module = None,
|
| 502 |
+
):
|
| 503 |
+
r"""
|
| 504 |
+
Function invoked when calling the pipeline for generation.
|
| 505 |
|
| 506 |
+
Args:
|
| 507 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 508 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 509 |
+
instead.
|
| 510 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 511 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 512 |
+
will be used instead
|
| 513 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 514 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 515 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 516 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 517 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 518 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 519 |
+
expense of slower inference.
|
| 520 |
+
timesteps (`List[int]`, *optional*):
|
| 521 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 522 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 523 |
+
passed will be used. Must be in descending order.
|
| 524 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
| 525 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 526 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 527 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 528 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 529 |
+
usually at the expense of lower image quality.
|
| 530 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 531 |
+
The number of images to generate per prompt.
|
| 532 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 533 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 534 |
+
to make generation deterministic.
|
| 535 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 536 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 537 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 538 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 539 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 540 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 541 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 542 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 543 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 544 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 545 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 546 |
+
The output format of the generate image. Choose between
|
| 547 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 548 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 549 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
| 550 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 551 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 552 |
+
`self.processor` in
|
| 553 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 554 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 555 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 556 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 557 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 558 |
+
`callback_on_step_end_tensor_inputs`.
|
| 559 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 560 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 561 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 562 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 563 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
| 564 |
|
| 565 |
+
Examples:
|
|
|
|
|
|
|
| 566 |
|
| 567 |
+
Returns:
|
| 568 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
| 569 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
| 570 |
+
images.
|
| 571 |
+
"""
|
| 572 |
|
| 573 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 574 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 575 |
|
| 576 |
+
# 1. Check inputs. Raise error if not correct
|
| 577 |
+
self.check_inputs(
|
| 578 |
+
prompt,
|
| 579 |
+
prompt_2,
|
| 580 |
+
height,
|
| 581 |
+
width,
|
| 582 |
+
prompt_embeds=prompt_embeds,
|
| 583 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 584 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 585 |
+
max_sequence_length=max_sequence_length,
|
| 586 |
+
)
|
| 587 |
|
| 588 |
+
self._guidance_scale = guidance_scale
|
| 589 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 590 |
+
self._interrupt = False
|
| 591 |
|
| 592 |
+
# 2. Define call parameters
|
| 593 |
+
if prompt is not None and isinstance(prompt, str):
|
| 594 |
+
batch_size = 1
|
| 595 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 596 |
+
batch_size = len(prompt)
|
| 597 |
+
else:
|
| 598 |
+
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
|
| 600 |
+
device = self._execution_device
|
| 601 |
|
| 602 |
+
lora_scale = (
|
| 603 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 604 |
+
)
|
| 605 |
+
(
|
| 606 |
+
prompt_embeds,
|
| 607 |
+
pooled_prompt_embeds,
|
| 608 |
+
text_ids,
|
| 609 |
+
) = self.encode_prompt(
|
| 610 |
+
prompt=prompt,
|
| 611 |
+
prompt_2=prompt_2,
|
| 612 |
+
prompt_embeds=prompt_embeds,
|
| 613 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 614 |
+
device=device,
|
| 615 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 616 |
+
max_sequence_length=max_sequence_length,
|
| 617 |
+
lora_scale=lora_scale,
|
| 618 |
+
)
|
| 619 |
+
(
|
| 620 |
+
neg_prompt_embeds,
|
| 621 |
+
neg_pooled_prompt_embeds,
|
| 622 |
+
neg_text_ids,
|
| 623 |
+
) = self.encode_prompt(
|
| 624 |
+
prompt="",
|
| 625 |
+
prompt_2=None,
|
| 626 |
+
device=device,
|
| 627 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 628 |
+
max_sequence_length=max_sequence_length,
|
| 629 |
+
lora_scale=lora_scale,
|
| 630 |
+
)
|
| 631 |
|
| 632 |
+
# 4. Prepare latent variables
|
| 633 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 634 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 635 |
+
batch_size * num_images_per_prompt,
|
| 636 |
+
num_layers,
|
| 637 |
+
num_channels_latents,
|
| 638 |
+
height,
|
| 639 |
+
width,
|
| 640 |
+
validation_box,
|
| 641 |
+
prompt_embeds.dtype,
|
| 642 |
+
device,
|
| 643 |
+
generator,
|
| 644 |
+
latents,
|
| 645 |
+
)
|
| 646 |
|
| 647 |
+
# 5. Prepare timesteps
|
| 648 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 649 |
+
image_seq_len = latent_image_ids.shape[0] # ???
|
| 650 |
+
mu = calculate_shift(
|
| 651 |
+
image_seq_len,
|
| 652 |
+
self.scheduler.config.base_image_seq_len,
|
| 653 |
+
self.scheduler.config.max_image_seq_len,
|
| 654 |
+
self.scheduler.config.base_shift,
|
| 655 |
+
self.scheduler.config.max_shift,
|
| 656 |
+
)
|
| 657 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 658 |
+
self.scheduler,
|
| 659 |
+
num_inference_steps,
|
| 660 |
+
device,
|
| 661 |
+
timesteps,
|
| 662 |
+
sigmas,
|
| 663 |
+
mu=mu,
|
| 664 |
+
)
|
| 665 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 666 |
+
self._num_timesteps = len(timesteps)
|
| 667 |
|
| 668 |
+
# handle guidance
|
| 669 |
+
if self.transformer.config.guidance_embeds:
|
| 670 |
+
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
| 671 |
+
guidance = guidance.expand(latents.shape[0])
|
| 672 |
+
else:
|
| 673 |
+
guidance = None
|
| 674 |
|
| 675 |
+
# 6. Denoising loop
|
| 676 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 677 |
+
for i, t in enumerate(timesteps):
|
| 678 |
+
if self.interrupt:
|
| 679 |
+
continue
|
| 680 |
+
|
| 681 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 682 |
+
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
| 683 |
+
|
| 684 |
+
noise_pred = self.transformer(
|
| 685 |
+
hidden_states=latents,
|
| 686 |
+
list_layer_box=validation_box,
|
| 687 |
+
timestep=timestep / 1000,
|
| 688 |
+
guidance=guidance,
|
| 689 |
+
pooled_projections=pooled_prompt_embeds,
|
| 690 |
+
encoder_hidden_states=prompt_embeds,
|
| 691 |
+
txt_ids=text_ids,
|
| 692 |
+
img_ids=latent_image_ids,
|
| 693 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 694 |
+
return_dict=False,
|
| 695 |
+
)[0]
|
| 696 |
+
|
| 697 |
+
neg_noise_pred = self.transformer(
|
| 698 |
+
hidden_states=latents,
|
| 699 |
+
list_layer_box=validation_box,
|
| 700 |
+
timestep=timestep / 1000,
|
| 701 |
+
guidance=guidance,
|
| 702 |
+
pooled_projections=neg_pooled_prompt_embeds,
|
| 703 |
+
encoder_hidden_states=neg_prompt_embeds,
|
| 704 |
+
txt_ids=neg_text_ids,
|
| 705 |
+
img_ids=latent_image_ids,
|
| 706 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 707 |
+
return_dict=False,
|
| 708 |
+
)[0]
|
| 709 |
+
|
| 710 |
+
noise_pred = neg_noise_pred + true_gs * (noise_pred - neg_noise_pred)
|
| 711 |
+
|
| 712 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 713 |
+
latents_dtype = latents.dtype
|
| 714 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 715 |
+
|
| 716 |
+
if latents.dtype != latents_dtype:
|
| 717 |
+
if torch.backends.mps.is_available():
|
| 718 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 719 |
+
latents = latents.to(latents_dtype)
|
| 720 |
+
|
| 721 |
+
if callback_on_step_end is not None:
|
| 722 |
+
callback_kwargs = {}
|
| 723 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 724 |
+
callback_kwargs[k] = locals()[k]
|
| 725 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 726 |
+
|
| 727 |
+
latents = callback_outputs.pop("latents", latents)
|
| 728 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 729 |
+
|
| 730 |
+
# call the callback, if provided
|
| 731 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 732 |
+
progress_bar.update()
|
| 733 |
+
|
| 734 |
+
if XLA_AVAILABLE:
|
| 735 |
+
xm.mark_step()
|
| 736 |
+
|
| 737 |
+
# create a grey latent
|
| 738 |
+
bs, n_frames, channel_latent, height, width = latents.shape
|
| 739 |
+
|
| 740 |
+
pixel_grey = torch.zeros(size=(bs*n_frames, 3, height*8, width*8), device=latents.device, dtype=latents.dtype)
|
| 741 |
+
latent_grey = self.vae.encode(pixel_grey).latent_dist.sample()
|
| 742 |
+
latent_grey = (latent_grey - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 743 |
+
latent_grey = latent_grey.view(bs, n_frames, channel_latent, height, width) # [bs, f, c_latent, h, w]
|
| 744 |
+
|
| 745 |
+
# fill in the latents
|
| 746 |
+
for layer_idx in range(latent_grey.shape[1]):
|
| 747 |
+
if validation_box[layer_idx] == None:
|
| 748 |
+
continue
|
| 749 |
+
x1, y1, x2, y2 = validation_box[layer_idx]
|
| 750 |
+
x1, y1, x2, y2 = x1 // 8, y1 // 8, x2 // 8, y2 // 8
|
| 751 |
+
latent_grey[:, layer_idx, :, y1:y2, x1:x2] = latents[:, layer_idx, :, y1:y2, x1:x2]
|
| 752 |
+
latents = latent_grey
|
| 753 |
+
|
| 754 |
+
if output_type == "latent":
|
| 755 |
+
image = latents
|
| 756 |
+
|
| 757 |
+
else:
|
| 758 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 759 |
+
latents = latents.reshape(bs * n_frames, channel_latent, height, width)
|
| 760 |
+
latents_segs = torch.split(latents, 16, dim=0) ### split latents by 16 to avoid odd purple output
|
| 761 |
+
image_segs = [self.vae.decode(latents_seg, return_dict=False)[0] for latents_seg in latents_segs]
|
| 762 |
+
image = torch.cat(image_segs, dim=0)
|
| 763 |
+
if sdxl_vae is not None:
|
| 764 |
+
sdxl_vae = sdxl_vae.to(dtype=image.dtype, device=image.device)
|
| 765 |
+
|
| 766 |
+
decoded_fg, decoded_alpha = sdxl_vae(latents, [validation_box])
|
| 767 |
+
decoded_alpha = (decoded_alpha + 1.0) / 2.0 #torch.Size([5, 1, 1024, 1024])
|
| 768 |
+
decoded_alpha = torch.clamp(decoded_alpha, min=0.0, max=1.0).permute(0, 2, 3, 1) #torch.Size([5, 1024, 1024, 1])
|
| 769 |
+
|
| 770 |
+
decoded_fg = (decoded_fg + 1.0) / 2.0
|
| 771 |
+
decoded_fg = torch.clamp(decoded_fg, min=0.0, max=1.0).permute(0, 2, 3, 1)#torch.Size([5, 1024, 1024, 3]))
|
| 772 |
+
|
| 773 |
+
vis_list = None
|
| 774 |
+
png = torch.cat([decoded_fg, decoded_alpha], dim=3)#[0] #torch.Size([1024, 1024, 4])
|
| 775 |
+
result_list = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
|
| 776 |
+
else:
|
| 777 |
+
result_list, vis_list = None, None
|
| 778 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 779 |
+
|
| 780 |
+
# Offload all models
|
| 781 |
+
self.maybe_free_model_hooks()
|
| 782 |
+
|
| 783 |
+
if not return_dict:
|
| 784 |
+
return (image, result_list, vis_list, latents)
|
| 785 |
+
|
| 786 |
+
return FluxPipelineOutput(images=image), result_list, vis_list, latents
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
class CustomFluxPipelineCfgInpaint(CustomFluxPipeline):
|
| 790 |
|
| 791 |
@torch.no_grad()
|
| 792 |
def __call__(
|
| 793 |
self,
|
| 794 |
+
image: Optional[List[torch.FloatTensor]] = None,
|
| 795 |
+
mask: Optional[torch.FloatTensor] = None,
|
| 796 |
prompt: Union[str, List[str]] = None,
|
| 797 |
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 798 |
validation_box: List[tuple] = None,
|
|
|
|
| 814 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 815 |
max_sequence_length: int = 512,
|
| 816 |
num_layers: int = 5,
|
| 817 |
+
sdxl_vae: nn.Module = None,
|
| 818 |
transparent_decoder: nn.Module = None,
|
| 819 |
):
|
| 820 |
r"""
|
|
|
|
| 961 |
latents,
|
| 962 |
)
|
| 963 |
|
| 964 |
+
# 4.1. Prepare image and mask
|
| 965 |
+
merged_pt, backgd_pt, list_layer_pt = image[0], image[1], image[2:]
|
| 966 |
+
# prepare RGB, Alpha
|
| 967 |
+
layer_pt_grey = [layer_pt[:, :3] * ((layer_pt[:, 3:4] + 1) / 2.) for layer_pt in list_layer_pt]
|
| 968 |
+
pixel_values_vae_input = torch.cat([merged_pt, backgd_pt] + layer_pt_grey, dim=0).to(device, dtype=self.vae.dtype) # [bs*(l+2), c_img, H, W]
|
| 969 |
+
# Convert images to latent space
|
| 970 |
+
model_input = self.vae.encode(pixel_values_vae_input).latent_dist.sample()
|
| 971 |
+
model_input = (model_input - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 972 |
+
model_input = model_input.reshape(1, len(validation_box), model_input.shape[1], model_input.shape[2], model_input.shape[3]) # [bs, f, c_latent, h, w]
|
| 973 |
+
# copy latent and noise
|
| 974 |
+
orig_latents = model_input
|
| 975 |
+
noise = latents.clone()
|
| 976 |
+
|
| 977 |
# 5. Prepare timesteps
|
| 978 |
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 979 |
+
image_seq_len = latent_image_ids.shape[0] # ???
|
| 980 |
mu = calculate_shift(
|
| 981 |
image_seq_len,
|
| 982 |
self.scheduler.config.base_image_seq_len,
|
|
|
|
| 1043 |
latents_dtype = latents.dtype
|
| 1044 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 1045 |
|
| 1046 |
+
# blend the latents with the original image
|
| 1047 |
+
init_latents_proper = orig_latents.to(latents.dtype)
|
| 1048 |
+
init_mask = mask.reshape(1, -1, 1, 1, 1).to(latents.dtype)
|
| 1049 |
+
if i < len(timesteps) - 1:
|
| 1050 |
+
noise_timestep = timesteps[i + 1]
|
| 1051 |
+
init_latents_proper = self.scheduler.scale_noise(
|
| 1052 |
+
init_latents_proper, torch.tensor([noise_timestep]), noise
|
| 1053 |
+
)
|
| 1054 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
| 1055 |
+
|
| 1056 |
if latents.dtype != latents_dtype:
|
| 1057 |
if torch.backends.mps.is_available():
|
| 1058 |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
|
|
| 1075 |
xm.mark_step()
|
| 1076 |
|
| 1077 |
# create a grey latent
|
| 1078 |
+
bs, n_frames, channel_latent, height, width = latents.shape
|
| 1079 |
|
| 1080 |
+
pixel_grey = torch.zeros(size=(bs*n_frames, 3, height*8, width*8), device=latents.device, dtype=latents.dtype)
|
| 1081 |
latent_grey = self.vae.encode(pixel_grey).latent_dist.sample()
|
| 1082 |
latent_grey = (latent_grey - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 1083 |
+
latent_grey = latent_grey.view(bs, n_frames, channel_latent, height, width) # [bs, f, c_latent, h, w]
|
| 1084 |
|
| 1085 |
# fill in the latents
|
| 1086 |
for layer_idx in range(latent_grey.shape[1]):
|
|
|
|
| 1096 |
|
| 1097 |
else:
|
| 1098 |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 1099 |
+
latents = latents.reshape(bs * n_frames, channel_latent, height, width)
|
| 1100 |
latents_segs = torch.split(latents, 16, dim=0) ### split latents by 16 to avoid odd purple output
|
| 1101 |
image_segs = [self.vae.decode(latents_seg, return_dict=False)[0] for latents_seg in latents_segs]
|
| 1102 |
image = torch.cat(image_segs, dim=0)
|
| 1103 |
+
if sdxl_vae is not None:
|
| 1104 |
+
sdxl_vae = sdxl_vae.to(dtype=image.dtype, device=image.device)
|
| 1105 |
|
| 1106 |
+
decoded_fg, decoded_alpha = sdxl_vae(latents, [validation_box])
|
| 1107 |
+
decoded_alpha = (decoded_alpha + 1.0) / 2.0 #torch.Size([5, 1, 1024, 1024])
|
| 1108 |
+
decoded_alpha = torch.clamp(decoded_alpha, min=0.0, max=1.0).permute(0, 2, 3, 1) #torch.Size([5, 1024, 1024, 1])
|
| 1109 |
|
| 1110 |
decoded_fg = (decoded_fg + 1.0) / 2.0
|
| 1111 |
+
decoded_fg = torch.clamp(decoded_fg, min=0.0, max=1.0).permute(0, 2, 3, 1)#torch.Size([5, 1024, 1024, 3]))
|
| 1112 |
|
| 1113 |
vis_list = None
|
| 1114 |
+
png = torch.cat([decoded_fg, decoded_alpha], dim=3)#[0] #torch.Size([1024, 1024, 4])
|
| 1115 |
result_list = (png * 255.0).detach().cpu().float().numpy().clip(0, 255).astype(np.uint8)
|
| 1116 |
else:
|
| 1117 |
result_list, vis_list = None, None
|
requirements.txt
CHANGED
|
@@ -43,4 +43,5 @@ pynvml==11.5.3 # 新增明确版本(conda实际安装11.5.3)
|
|
| 43 |
colorama==0.4.6 # 新增明确版本(conda实际安装0.4.6)
|
| 44 |
click>=8.0.4,<9 # 保持约束(conda实际安装8.1.7符合要求)\
|
| 45 |
|
| 46 |
-
sentencepiece
|
|
|
|
|
|
| 43 |
colorama==0.4.6 # 新增明确版本(conda实际安装0.4.6)
|
| 44 |
click>=8.0.4,<9 # 保持约束(conda实际安装8.1.7符合要求)\
|
| 45 |
|
| 46 |
+
sentencepiece
|
| 47 |
+
random
|