Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
import re
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import googleapiclient.discovery
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
|
| 9 |
+
# Load the BERT tokenizer and model
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 11 |
+
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Set up the YouTube API service
|
| 15 |
+
api_service_name = "youtube"
|
| 16 |
+
api_version = "v3"
|
| 17 |
+
DEVELOPER_KEY = "AIzaSyC4Vx8G6nm3Ow9xq7NluTuCCJ1d_5w4YPE" # Replace with your actual API key
|
| 18 |
+
|
| 19 |
+
youtube = googleapiclient.discovery.build(api_service_name, api_version, developerKey=DEVELOPER_KEY)
|
| 20 |
+
|
| 21 |
+
# Function to fetch comments for a video ID
|
| 22 |
+
def scrape_comments(video_id):
|
| 23 |
+
request = youtube.commentThreads().list(
|
| 24 |
+
part="snippet",
|
| 25 |
+
videoId=video_id,
|
| 26 |
+
maxResults=100
|
| 27 |
+
)
|
| 28 |
+
response = request.execute()
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
comments = []
|
| 32 |
+
|
| 33 |
+
for item in response['items']:
|
| 34 |
+
comment = item['snippet']['topLevelComment']['snippet']
|
| 35 |
+
comments.append([
|
| 36 |
+
comment['textDisplay']
|
| 37 |
+
])
|
| 38 |
+
|
| 39 |
+
comments_df = pd.DataFrame(comments, columns=['comment'])
|
| 40 |
+
|
| 41 |
+
# df.head(10).
|
| 42 |
+
|
| 43 |
+
return comments_df
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# Function to extract video ID from YouTube URL
|
| 47 |
+
def extract_video_id(video_url):
|
| 48 |
+
match = re.search(r'(?<=v=)[\w-]+', video_url)
|
| 49 |
+
if match:
|
| 50 |
+
return match.group(0)
|
| 51 |
+
else:
|
| 52 |
+
st.error("Invalid YouTube video URL")
|
| 53 |
+
|
| 54 |
+
# Function to fetch YouTube comments for a video ID
|
| 55 |
+
def fetch_comments(video_id):
|
| 56 |
+
# Example using youtube-comment-scraper-python library
|
| 57 |
+
comments = scrape_comments(video_id)
|
| 58 |
+
return comments
|
| 59 |
+
|
| 60 |
+
# Function to analyze sentiment for a single comment
|
| 61 |
+
def analyze_sentiment(comment):
|
| 62 |
+
tokens = tokenizer.encode(comment, return_tensors="pt", max_length=512, truncation=True)
|
| 63 |
+
# input_ids = tokens['input_ids']
|
| 64 |
+
# attention_mask = tokens['attention_mask']
|
| 65 |
+
|
| 66 |
+
# result = model(input_ids, attention_mask=attention_mask)
|
| 67 |
+
result = model(tokens)
|
| 68 |
+
|
| 69 |
+
sentiment_id = torch.argmax(result.logits) + 1
|
| 70 |
+
if(sentiment_id > 3):
|
| 71 |
+
sentiment_label = "Positive"
|
| 72 |
+
elif(sentiment_id < 3):
|
| 73 |
+
sentiment_label = "Negative"
|
| 74 |
+
else:
|
| 75 |
+
sentiment_label = "Neutral"
|
| 76 |
+
|
| 77 |
+
return sentiment_label
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def main():
|
| 81 |
+
st.title("YouTube Comments Sentiment Analysis")
|
| 82 |
+
st.write("Enter a YouTube video link below:")
|
| 83 |
+
|
| 84 |
+
video_url = st.text_input("YouTube Video URL:")
|
| 85 |
+
if st.button("Extract Comments and Analyze"):
|
| 86 |
+
video_id = extract_video_id(video_url)
|
| 87 |
+
if video_id:
|
| 88 |
+
comments_df = fetch_comments(video_id)
|
| 89 |
+
# Comments is a dataframe of just the comments text
|
| 90 |
+
# st.write("Top 100 Comments extracted\n", comments_df)
|
| 91 |
+
comments_df['sentiment'] = comments_df['comment'].apply(lambda x: analyze_sentiment(x[:512]))
|
| 92 |
+
sentiment_counts = comments_df['sentiment'].value_counts()
|
| 93 |
+
positive_count = comments_df['sentiment'].value_counts().get('Positive', 0)
|
| 94 |
+
negative_count = comments_df['sentiment'].value_counts().get('Negative', 0)
|
| 95 |
+
neutral_count = comments_df['sentiment'].value_counts().get('Neutral', 0)
|
| 96 |
+
|
| 97 |
+
# Create pie chart in col2 with custom colors
|
| 98 |
+
fig_pie = px.pie(values=[positive_count, negative_count, neutral_count],
|
| 99 |
+
names=['Positive', 'Negative', 'Neutral'],
|
| 100 |
+
title='Pie chart representations',
|
| 101 |
+
color=sentiment_counts.index, # Use sentiment categories as colors
|
| 102 |
+
color_discrete_map={'Positive': 'green', 'Negative': 'red', 'Neutral': 'blue'})
|
| 103 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
| 104 |
+
|
| 105 |
+
# Create bar chart below the pie chart with custom colors
|
| 106 |
+
fig_bar = px.bar(x=sentiment_counts.index, y=sentiment_counts.values,
|
| 107 |
+
labels={'x': 'Sentiment', 'y': 'Count'},
|
| 108 |
+
title='Bar plot representations',
|
| 109 |
+
color=sentiment_counts.index, # Use sentiment categories as colors
|
| 110 |
+
color_discrete_map={'Positive': 'green', 'Negative': 'red', 'Neutral': 'blue'})
|
| 111 |
+
st.plotly_chart(fig_bar)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
main()
|
| 116 |
+
|