Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
import cv2
|
| 4 |
import re
|
|
|
|
| 5 |
from flask import Flask, request, jsonify, render_template
|
| 6 |
from deepgram import DeepgramClient, PrerecordedOptions
|
| 7 |
from dotenv import load_dotenv
|
|
@@ -68,9 +352,6 @@ def transcribe_audio(wav_file_path):
|
|
| 68 |
|
| 69 |
# Check if the response is valid
|
| 70 |
if response:
|
| 71 |
-
# print("Request successful! Processing response.")
|
| 72 |
-
|
| 73 |
-
# Convert response to JSON string
|
| 74 |
try:
|
| 75 |
data_str = response.to_json(indent=4)
|
| 76 |
except AttributeError as e:
|
|
@@ -89,11 +370,10 @@ def transcribe_audio(wav_file_path):
|
|
| 89 |
return {"status": "error", "message": f"Error extracting transcript: {e}"}
|
| 90 |
|
| 91 |
print(f"Transcript obtained: {transcript}")
|
| 92 |
-
#
|
| 93 |
transcript_file_path = "transcript_from_transcribe_audio.txt"
|
| 94 |
with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
|
| 95 |
transcript_file.write(transcript)
|
| 96 |
-
# print(f"Transcript saved to file: {transcript_file_path}")
|
| 97 |
|
| 98 |
return transcript
|
| 99 |
else:
|
|
@@ -166,6 +446,11 @@ def get_information_from_video_using_OCR(video_path, interval=1):
|
|
| 166 |
return extracted_text
|
| 167 |
|
| 168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
|
| 171 |
@app.route('/process-video', methods=['POST'])
|
|
@@ -177,33 +462,30 @@ def process_video():
|
|
| 177 |
temp_video_path = None
|
| 178 |
|
| 179 |
try:
|
| 180 |
-
# Step 1: Download the
|
| 181 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
| 182 |
temp_video_path = temp_video_file.name
|
| 183 |
download_video(video_url, temp_video_path)
|
| 184 |
-
|
| 185 |
-
# Step 2:
|
| 186 |
-
video_info = get_information_from_video_using_OCR(temp_video_path, interval)
|
| 187 |
|
| 188 |
if not video_info:
|
| 189 |
video_info = ""
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
# Step 2: Convert the MP4 to WAV
|
| 194 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
|
| 195 |
temp_wav_path = temp_wav_file.name
|
| 196 |
convert_mp4_to_wav(temp_video_path, temp_wav_path)
|
| 197 |
|
|
|
|
| 198 |
audio_info = transcribe_audio(temp_wav_path)
|
| 199 |
|
| 200 |
-
# If no transcription present, use an empty string
|
| 201 |
if not audio_info:
|
| 202 |
audio_info = ""
|
| 203 |
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
# Step 3: Generate structured recipe information using Gemini API synchronously
|
| 207 |
structured_data = query_gemini_api(video_info, audio_info)
|
| 208 |
|
| 209 |
return jsonify(structured_data)
|
|
@@ -212,14 +494,10 @@ def process_video():
|
|
| 212 |
return jsonify({"error": str(e)}), 500
|
| 213 |
|
| 214 |
finally:
|
| 215 |
-
# Clean up temporary
|
| 216 |
if temp_video_path and os.path.exists(temp_video_path):
|
| 217 |
os.remove(temp_video_path)
|
| 218 |
-
print(f"Temporary
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
|
| 225 |
def query_gemini_api(video_transcription, audio_transcription):
|
|
@@ -239,10 +517,8 @@ def query_gemini_api(video_transcription, audio_transcription):
|
|
| 239 |
"7. Serving size: In count of people or portion size.\n"
|
| 240 |
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
|
| 241 |
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
|
| 242 |
-
"Also, make sure not to provide anything else or any other information or warning or text apart from the above things mentioned."
|
| 243 |
f"Text: {audio_transcription}\n"
|
| 244 |
f"Text: {video_transcription}\n"
|
| 245 |
-
|
| 246 |
)
|
| 247 |
|
| 248 |
# Prepare the payload and headers
|
|
@@ -278,4 +554,3 @@ def query_gemini_api(video_transcription, audio_transcription):
|
|
| 278 |
|
| 279 |
if __name__ == '__main__':
|
| 280 |
app.run(debug=True)
|
| 281 |
-
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# import requests
|
| 3 |
+
# import cv2
|
| 4 |
+
# import re
|
| 5 |
+
# from flask import Flask, request, jsonify, render_template
|
| 6 |
+
# from deepgram import DeepgramClient, PrerecordedOptions
|
| 7 |
+
# from dotenv import load_dotenv
|
| 8 |
+
# import tempfile
|
| 9 |
+
# import json
|
| 10 |
+
# import subprocess
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# import warnings
|
| 14 |
+
# warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
|
| 15 |
+
|
| 16 |
+
# app = Flask(__name__)
|
| 17 |
+
# print("APP IS RUNNING, ANIKET")
|
| 18 |
+
|
| 19 |
+
# # Load the .env file
|
| 20 |
+
# load_dotenv()
|
| 21 |
+
|
| 22 |
+
# print("ENV LOADED, ANIKET")
|
| 23 |
+
|
| 24 |
+
# # Fetch the API key from the .env file
|
| 25 |
+
# API_KEY = os.getenv("FIRST_API_KEY")
|
| 26 |
+
# DEEPGRAM_API_KEY = os.getenv("SECOND_API_KEY")
|
| 27 |
+
|
| 28 |
+
# # Ensure the API key is loaded correctly
|
| 29 |
+
# if not API_KEY:
|
| 30 |
+
# raise ValueError("API Key not found. Make sure it is set in the .env file.")
|
| 31 |
+
|
| 32 |
+
# if not DEEPGRAM_API_KEY:
|
| 33 |
+
# raise ValueError("DEEPGRAM_API_KEY not found. Make sure it is set in the .env file.")
|
| 34 |
+
|
| 35 |
+
# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
| 36 |
+
# GEMINI_API_KEY = API_KEY
|
| 37 |
+
|
| 38 |
+
# @app.route("/", methods=["GET"])
|
| 39 |
+
# def health_check():
|
| 40 |
+
# return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# def transcribe_audio(wav_file_path):
|
| 44 |
+
# """
|
| 45 |
+
# Transcribe audio from a video file using Deepgram API synchronously.
|
| 46 |
+
|
| 47 |
+
# Args:
|
| 48 |
+
# wav_file_path (str): Path to save the converted WAV file.
|
| 49 |
+
# Returns:
|
| 50 |
+
# dict: A dictionary containing status, transcript, or error message.
|
| 51 |
+
# """
|
| 52 |
+
# print("Entered the transcribe_audio function")
|
| 53 |
+
# try:
|
| 54 |
+
# # Initialize Deepgram client
|
| 55 |
+
# deepgram = DeepgramClient(DEEPGRAM_API_KEY)
|
| 56 |
+
|
| 57 |
+
# # Open the converted WAV file
|
| 58 |
+
# with open(wav_file_path, 'rb') as buffer_data:
|
| 59 |
+
# payload = {'buffer': buffer_data}
|
| 60 |
+
|
| 61 |
+
# # Configure transcription options
|
| 62 |
+
# options = PrerecordedOptions(
|
| 63 |
+
# smart_format=True, model="nova-2", language="en-US"
|
| 64 |
+
# )
|
| 65 |
+
|
| 66 |
+
# # Transcribe the audio
|
| 67 |
+
# response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)
|
| 68 |
+
|
| 69 |
+
# # Check if the response is valid
|
| 70 |
+
# if response:
|
| 71 |
+
# # print("Request successful! Processing response.")
|
| 72 |
+
|
| 73 |
+
# # Convert response to JSON string
|
| 74 |
+
# try:
|
| 75 |
+
# data_str = response.to_json(indent=4)
|
| 76 |
+
# except AttributeError as e:
|
| 77 |
+
# return {"status": "error", "message": f"Error converting response to JSON: {e}"}
|
| 78 |
+
|
| 79 |
+
# # Parse the JSON string to a Python dictionary
|
| 80 |
+
# try:
|
| 81 |
+
# data = json.loads(data_str)
|
| 82 |
+
# except json.JSONDecodeError as e:
|
| 83 |
+
# return {"status": "error", "message": f"Error parsing JSON string: {e}"}
|
| 84 |
+
|
| 85 |
+
# # Extract the transcript
|
| 86 |
+
# try:
|
| 87 |
+
# transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
|
| 88 |
+
# except KeyError as e:
|
| 89 |
+
# return {"status": "error", "message": f"Error extracting transcript: {e}"}
|
| 90 |
+
|
| 91 |
+
# print(f"Transcript obtained: {transcript}")
|
| 92 |
+
# # Step: Save the transcript to a text file
|
| 93 |
+
# transcript_file_path = "transcript_from_transcribe_audio.txt"
|
| 94 |
+
# with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
|
| 95 |
+
# transcript_file.write(transcript)
|
| 96 |
+
# # print(f"Transcript saved to file: {transcript_file_path}")
|
| 97 |
+
|
| 98 |
+
# return transcript
|
| 99 |
+
# else:
|
| 100 |
+
# return {"status": "error", "message": "Invalid response from Deepgram."}
|
| 101 |
+
|
| 102 |
+
# except FileNotFoundError:
|
| 103 |
+
# return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
|
| 104 |
+
# except Exception as e:
|
| 105 |
+
# return {"status": "error", "message": f"Unexpected error: {e}"}
|
| 106 |
+
# finally:
|
| 107 |
+
# # Clean up the temporary WAV file
|
| 108 |
+
# if os.path.exists(wav_file_path):
|
| 109 |
+
# os.remove(wav_file_path)
|
| 110 |
+
# print(f"Temporary WAV file deleted: {wav_file_path}")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# def download_video(url, temp_video_path):
|
| 115 |
+
# """Download video (MP4 format) from the given URL and save it to temp_video_path."""
|
| 116 |
+
# response = requests.get(url, stream=True)
|
| 117 |
+
# if response.status_code == 200:
|
| 118 |
+
# with open(temp_video_path, 'wb') as f:
|
| 119 |
+
# for chunk in response.iter_content(chunk_size=1024):
|
| 120 |
+
# f.write(chunk)
|
| 121 |
+
# print(f"Audio downloaded successfully to {temp_video_path}")
|
| 122 |
+
# else:
|
| 123 |
+
# raise Exception(f"Failed to download audio, status code: {response.status_code}")
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# def preprocess_frame(frame):
|
| 127 |
+
# """Preprocess the frame for better OCR accuracy."""
|
| 128 |
+
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 129 |
+
# denoised = cv2.medianBlur(gray, 3)
|
| 130 |
+
# _, thresh = cv2.threshold(denoised, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
| 131 |
+
# return thresh
|
| 132 |
+
|
| 133 |
+
# def clean_ocr_text(text):
|
| 134 |
+
# """Clean the OCR output by removing noise and unwanted characters."""
|
| 135 |
+
# cleaned_text = re.sub(r'[^A-Za-z0-9\s,.!?-]', '', text)
|
| 136 |
+
# cleaned_text = '\n'.join([line.strip() for line in cleaned_text.splitlines() if len(line.strip()) > 2])
|
| 137 |
+
# return cleaned_text
|
| 138 |
+
|
| 139 |
+
# def get_information_from_video_using_OCR(video_path, interval=1):
|
| 140 |
+
# """Extract text from video frames using OCR and return the combined text content."""
|
| 141 |
+
# cap = cv2.VideoCapture(video_path)
|
| 142 |
+
# fps = int(cap.get(cv2.CAP_PROP_FPS))
|
| 143 |
+
# frame_interval = interval * fps
|
| 144 |
+
# frame_count = 0
|
| 145 |
+
# extracted_text = ""
|
| 146 |
+
|
| 147 |
+
# print("Starting text extraction from video...")
|
| 148 |
+
|
| 149 |
+
# while cap.isOpened():
|
| 150 |
+
# ret, frame = cap.read()
|
| 151 |
+
# if not ret:
|
| 152 |
+
# break
|
| 153 |
+
|
| 154 |
+
# if frame_count % frame_interval == 0:
|
| 155 |
+
# preprocessed_frame = preprocess_frame(frame)
|
| 156 |
+
# text = pytesseract.image_to_string(preprocessed_frame, lang='eng', config='--psm 6 --oem 3')
|
| 157 |
+
# cleaned_text = clean_ocr_text(text)
|
| 158 |
+
# if cleaned_text:
|
| 159 |
+
# extracted_text += cleaned_text + "\n\n"
|
| 160 |
+
# print(f"Text found at frame {frame_count}: {cleaned_text[:50]}...")
|
| 161 |
+
|
| 162 |
+
# frame_count += 1
|
| 163 |
+
|
| 164 |
+
# cap.release()
|
| 165 |
+
# print("Text extraction completed.")
|
| 166 |
+
# return extracted_text
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
# @app.route('/process-video', methods=['POST'])
|
| 172 |
+
# def process_video():
|
| 173 |
+
# if 'videoUrl' not in request.json:
|
| 174 |
+
# return jsonify({"error": "No video URL provided"}), 400
|
| 175 |
+
|
| 176 |
+
# video_url = request.json['videoUrl']
|
| 177 |
+
# temp_video_path = None
|
| 178 |
+
|
| 179 |
+
# try:
|
| 180 |
+
# # Step 1: Download the WAV file from the provided URL
|
| 181 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
| 182 |
+
# temp_video_path = temp_video_file.name
|
| 183 |
+
# download_video(video_url, temp_video_path)
|
| 184 |
+
# interval = 1
|
| 185 |
+
# # Step 2: get the information from the downloaded MP4 file synchronously
|
| 186 |
+
# video_info = get_information_from_video_using_OCR(temp_video_path, interval)
|
| 187 |
+
|
| 188 |
+
# if not video_info:
|
| 189 |
+
# video_info = ""
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# # Step 2: Convert the MP4 to WAV
|
| 194 |
+
# with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
|
| 195 |
+
# temp_wav_path = temp_wav_file.name
|
| 196 |
+
# convert_mp4_to_wav(temp_video_path, temp_wav_path)
|
| 197 |
+
|
| 198 |
+
# audio_info = transcribe_audio(temp_wav_path)
|
| 199 |
+
|
| 200 |
+
# # If no transcription present, use an empty string
|
| 201 |
+
# if not audio_info:
|
| 202 |
+
# audio_info = ""
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
# # Step 3: Generate structured recipe information using Gemini API synchronously
|
| 207 |
+
# structured_data = query_gemini_api(video_info, audio_info)
|
| 208 |
+
|
| 209 |
+
# return jsonify(structured_data)
|
| 210 |
+
|
| 211 |
+
# except Exception as e:
|
| 212 |
+
# return jsonify({"error": str(e)}), 500
|
| 213 |
+
|
| 214 |
+
# finally:
|
| 215 |
+
# # Clean up temporary audio file
|
| 216 |
+
# if temp_video_path and os.path.exists(temp_video_path):
|
| 217 |
+
# os.remove(temp_video_path)
|
| 218 |
+
# print(f"Temporary audio file deleted: {temp_video_path}")
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# def query_gemini_api(video_transcription, audio_transcription):
|
| 226 |
+
# """
|
| 227 |
+
# Send transcription text to Gemini API and fetch structured recipe information synchronously.
|
| 228 |
+
# """
|
| 229 |
+
# try:
|
| 230 |
+
# # Define the structured prompt
|
| 231 |
+
# prompt = (
|
| 232 |
+
# "Analyze the provided cooking video and audio transcription combined and based on the combined information extract the following structured information:\n"
|
| 233 |
+
# "1. Recipe Name: Identify the name of the dish being prepared.\n"
|
| 234 |
+
# "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
|
| 235 |
+
# "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
|
| 236 |
+
# "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
|
| 237 |
+
# "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
|
| 238 |
+
# "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
|
| 239 |
+
# "7. Serving size: In count of people or portion size.\n"
|
| 240 |
+
# "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
|
| 241 |
+
# "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
|
| 242 |
+
# "Also, make sure not to provide anything else or any other information or warning or text apart from the above things mentioned."
|
| 243 |
+
# f"Text: {audio_transcription}\n"
|
| 244 |
+
# f"Text: {video_transcription}\n"
|
| 245 |
+
|
| 246 |
+
# )
|
| 247 |
+
|
| 248 |
+
# # Prepare the payload and headers
|
| 249 |
+
# payload = {
|
| 250 |
+
# "contents": [
|
| 251 |
+
# {
|
| 252 |
+
# "parts": [
|
| 253 |
+
# {"text": prompt}
|
| 254 |
+
# ]
|
| 255 |
+
# }
|
| 256 |
+
# ]
|
| 257 |
+
# }
|
| 258 |
+
# headers = {"Content-Type": "application/json"}
|
| 259 |
+
|
| 260 |
+
# # Send request to Gemini API synchronously
|
| 261 |
+
# response = requests.post(
|
| 262 |
+
# f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
|
| 263 |
+
# json=payload,
|
| 264 |
+
# headers=headers,
|
| 265 |
+
# )
|
| 266 |
+
|
| 267 |
+
# # Raise error if response code is not 200
|
| 268 |
+
# response.raise_for_status()
|
| 269 |
+
|
| 270 |
+
# data = response.json()
|
| 271 |
+
|
| 272 |
+
# return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
|
| 273 |
+
|
| 274 |
+
# except requests.exceptions.RequestException as e:
|
| 275 |
+
# print(f"Error querying Gemini API: {e}")
|
| 276 |
+
# return {"error": str(e)}
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
# if __name__ == '__main__':
|
| 280 |
+
# app.run(debug=True)
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
|
| 284 |
import os
|
| 285 |
import requests
|
| 286 |
import cv2
|
| 287 |
import re
|
| 288 |
+
import pytesseract
|
| 289 |
from flask import Flask, request, jsonify, render_template
|
| 290 |
from deepgram import DeepgramClient, PrerecordedOptions
|
| 291 |
from dotenv import load_dotenv
|
|
|
|
| 352 |
|
| 353 |
# Check if the response is valid
|
| 354 |
if response:
|
|
|
|
|
|
|
|
|
|
| 355 |
try:
|
| 356 |
data_str = response.to_json(indent=4)
|
| 357 |
except AttributeError as e:
|
|
|
|
| 370 |
return {"status": "error", "message": f"Error extracting transcript: {e}"}
|
| 371 |
|
| 372 |
print(f"Transcript obtained: {transcript}")
|
| 373 |
+
# Save the transcript to a text file
|
| 374 |
transcript_file_path = "transcript_from_transcribe_audio.txt"
|
| 375 |
with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
|
| 376 |
transcript_file.write(transcript)
|
|
|
|
| 377 |
|
| 378 |
return transcript
|
| 379 |
else:
|
|
|
|
| 446 |
return extracted_text
|
| 447 |
|
| 448 |
|
| 449 |
+
def convert_mp4_to_wav(mp4_path, wav_path):
|
| 450 |
+
"""Convert an MP4 file to a WAV file."""
|
| 451 |
+
command = f"ffmpeg -i {mp4_path} -vn -acodec pcm_s16le -ar 44100 -ac 2 {wav_path}"
|
| 452 |
+
subprocess.run(command, shell=True, check=True)
|
| 453 |
+
print(f"MP4 file converted to WAV: {wav_path}")
|
| 454 |
|
| 455 |
|
| 456 |
@app.route('/process-video', methods=['POST'])
|
|
|
|
| 462 |
temp_video_path = None
|
| 463 |
|
| 464 |
try:
|
| 465 |
+
# Step 1: Download the MP4 file from the provided URL
|
| 466 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
| 467 |
temp_video_path = temp_video_file.name
|
| 468 |
download_video(video_url, temp_video_path)
|
| 469 |
+
|
| 470 |
+
# Step 2: Get the information from the downloaded MP4 file synchronously
|
| 471 |
+
video_info = get_information_from_video_using_OCR(temp_video_path, interval=1)
|
| 472 |
|
| 473 |
if not video_info:
|
| 474 |
video_info = ""
|
| 475 |
|
| 476 |
+
# Step 3: Convert the MP4 to WAV
|
|
|
|
|
|
|
| 477 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
|
| 478 |
temp_wav_path = temp_wav_file.name
|
| 479 |
convert_mp4_to_wav(temp_video_path, temp_wav_path)
|
| 480 |
|
| 481 |
+
# Step 4: Transcribe the audio
|
| 482 |
audio_info = transcribe_audio(temp_wav_path)
|
| 483 |
|
| 484 |
+
# If no transcription is present, use an empty string
|
| 485 |
if not audio_info:
|
| 486 |
audio_info = ""
|
| 487 |
|
| 488 |
+
# Step 5: Generate structured recipe information using Gemini API synchronously
|
|
|
|
|
|
|
| 489 |
structured_data = query_gemini_api(video_info, audio_info)
|
| 490 |
|
| 491 |
return jsonify(structured_data)
|
|
|
|
| 494 |
return jsonify({"error": str(e)}), 500
|
| 495 |
|
| 496 |
finally:
|
| 497 |
+
# Clean up temporary video file
|
| 498 |
if temp_video_path and os.path.exists(temp_video_path):
|
| 499 |
os.remove(temp_video_path)
|
| 500 |
+
print(f"Temporary video file deleted: {temp_video_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
|
| 502 |
|
| 503 |
def query_gemini_api(video_transcription, audio_transcription):
|
|
|
|
| 517 |
"7. Serving size: In count of people or portion size.\n"
|
| 518 |
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
|
| 519 |
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
|
|
|
|
| 520 |
f"Text: {audio_transcription}\n"
|
| 521 |
f"Text: {video_transcription}\n"
|
|
|
|
| 522 |
)
|
| 523 |
|
| 524 |
# Prepare the payload and headers
|
|
|
|
| 554 |
|
| 555 |
if __name__ == '__main__':
|
| 556 |
app.run(debug=True)
|
|
|