Spaces:
Sleeping
Sleeping
Added both audio and video information
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
from flask import Flask, request, jsonify, render_template
|
|
|
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import tempfile
|
| 6 |
import json
|
|
@@ -37,8 +38,78 @@ def health_check():
|
|
| 37 |
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
| 38 |
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
"""Download video (MP4 format) from the given URL and save it to temp_video_path."""
|
| 43 |
response = requests.get(url, stream=True)
|
| 44 |
if response.status_code == 200:
|
|
@@ -107,16 +178,31 @@ def process_video():
|
|
| 107 |
# Step 1: Download the WAV file from the provided URL
|
| 108 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
| 109 |
temp_video_path = temp_video_file.name
|
| 110 |
-
|
| 111 |
interval = 1
|
| 112 |
# Step 2: get the information from the downloaded MP4 file synchronously
|
| 113 |
video_info = get_information_from_video_using_OCR(temp_video_path, interval)
|
| 114 |
|
| 115 |
if not video_info:
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
|
|
|
|
|
|
| 118 |
# Step 3: Generate structured recipe information using Gemini API synchronously
|
| 119 |
-
structured_data = query_gemini_api(video_info)
|
| 120 |
|
| 121 |
return jsonify(structured_data)
|
| 122 |
|
|
@@ -134,14 +220,14 @@ def process_video():
|
|
| 134 |
|
| 135 |
|
| 136 |
|
| 137 |
-
def query_gemini_api(
|
| 138 |
"""
|
| 139 |
Send transcription text to Gemini API and fetch structured recipe information synchronously.
|
| 140 |
"""
|
| 141 |
try:
|
| 142 |
# Define the structured prompt
|
| 143 |
prompt = (
|
| 144 |
-
"Analyze the provided cooking video transcription and extract the following structured information:\n"
|
| 145 |
"1. Recipe Name: Identify the name of the dish being prepared.\n"
|
| 146 |
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
|
| 147 |
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
|
|
@@ -152,7 +238,9 @@ def query_gemini_api(transcription):
|
|
| 152 |
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
|
| 153 |
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
|
| 154 |
"Also, make sure not to provide anything else or any other information or warning or text apart from the above things mentioned."
|
| 155 |
-
f"Text: {
|
|
|
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
# Prepare the payload and headers
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
from flask import Flask, request, jsonify, render_template
|
| 4 |
+
from deepgram import DeepgramClient, PrerecordedOptions
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
import tempfile
|
| 7 |
import json
|
|
|
|
| 38 |
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
| 39 |
|
| 40 |
|
| 41 |
+
def transcribe_audio(wav_file_path):
|
| 42 |
+
"""
|
| 43 |
+
Transcribe audio from a video file using Deepgram API synchronously.
|
| 44 |
+
|
| 45 |
+
Args:
|
| 46 |
+
wav_file_path (str): Path to save the converted WAV file.
|
| 47 |
+
Returns:
|
| 48 |
+
dict: A dictionary containing status, transcript, or error message.
|
| 49 |
+
"""
|
| 50 |
+
print("Entered the transcribe_audio function")
|
| 51 |
+
try:
|
| 52 |
+
# Initialize Deepgram client
|
| 53 |
+
deepgram = DeepgramClient(DEEPGRAM_API_KEY)
|
| 54 |
+
|
| 55 |
+
# Open the converted WAV file
|
| 56 |
+
with open(wav_file_path, 'rb') as buffer_data:
|
| 57 |
+
payload = {'buffer': buffer_data}
|
| 58 |
+
|
| 59 |
+
# Configure transcription options
|
| 60 |
+
options = PrerecordedOptions(
|
| 61 |
+
smart_format=True, model="nova-2", language="en-US"
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Transcribe the audio
|
| 65 |
+
response = deepgram.listen.prerecorded.v('1').transcribe_file(payload, options)
|
| 66 |
+
|
| 67 |
+
# Check if the response is valid
|
| 68 |
+
if response:
|
| 69 |
+
# print("Request successful! Processing response.")
|
| 70 |
+
|
| 71 |
+
# Convert response to JSON string
|
| 72 |
+
try:
|
| 73 |
+
data_str = response.to_json(indent=4)
|
| 74 |
+
except AttributeError as e:
|
| 75 |
+
return {"status": "error", "message": f"Error converting response to JSON: {e}"}
|
| 76 |
+
|
| 77 |
+
# Parse the JSON string to a Python dictionary
|
| 78 |
+
try:
|
| 79 |
+
data = json.loads(data_str)
|
| 80 |
+
except json.JSONDecodeError as e:
|
| 81 |
+
return {"status": "error", "message": f"Error parsing JSON string: {e}"}
|
| 82 |
+
|
| 83 |
+
# Extract the transcript
|
| 84 |
+
try:
|
| 85 |
+
transcript = data["results"]["channels"][0]["alternatives"][0]["transcript"]
|
| 86 |
+
except KeyError as e:
|
| 87 |
+
return {"status": "error", "message": f"Error extracting transcript: {e}"}
|
| 88 |
+
|
| 89 |
+
print(f"Transcript obtained: {transcript}")
|
| 90 |
+
# Step: Save the transcript to a text file
|
| 91 |
+
transcript_file_path = "transcript_from_transcribe_audio.txt"
|
| 92 |
+
with open(transcript_file_path, "w", encoding="utf-8") as transcript_file:
|
| 93 |
+
transcript_file.write(transcript)
|
| 94 |
+
# print(f"Transcript saved to file: {transcript_file_path}")
|
| 95 |
+
|
| 96 |
+
return transcript
|
| 97 |
+
else:
|
| 98 |
+
return {"status": "error", "message": "Invalid response from Deepgram."}
|
| 99 |
+
|
| 100 |
+
except FileNotFoundError:
|
| 101 |
+
return {"status": "error", "message": f"Video file not found: {wav_file_path}"}
|
| 102 |
+
except Exception as e:
|
| 103 |
+
return {"status": "error", "message": f"Unexpected error: {e}"}
|
| 104 |
+
finally:
|
| 105 |
+
# Clean up the temporary WAV file
|
| 106 |
+
if os.path.exists(wav_file_path):
|
| 107 |
+
os.remove(wav_file_path)
|
| 108 |
+
print(f"Temporary WAV file deleted: {wav_file_path}")
|
| 109 |
+
|
| 110 |
|
| 111 |
+
|
| 112 |
+
def download_video(url, temp_video_path):
|
| 113 |
"""Download video (MP4 format) from the given URL and save it to temp_video_path."""
|
| 114 |
response = requests.get(url, stream=True)
|
| 115 |
if response.status_code == 200:
|
|
|
|
| 178 |
# Step 1: Download the WAV file from the provided URL
|
| 179 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
|
| 180 |
temp_video_path = temp_video_file.name
|
| 181 |
+
download_video(video_url, temp_video_path)
|
| 182 |
interval = 1
|
| 183 |
# Step 2: get the information from the downloaded MP4 file synchronously
|
| 184 |
video_info = get_information_from_video_using_OCR(temp_video_path, interval)
|
| 185 |
|
| 186 |
if not video_info:
|
| 187 |
+
video_info = ""
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# Step 2: Convert the MP4 to WAV
|
| 192 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_wav_file:
|
| 193 |
+
temp_wav_path = temp_wav_file.name
|
| 194 |
+
convert_mp4_to_wav(temp_video_path, temp_wav_path)
|
| 195 |
+
|
| 196 |
+
audio_info = transcribe_audio(temp_wav_path)
|
| 197 |
+
|
| 198 |
+
# If no transcription present, use an empty string
|
| 199 |
+
if not audio_info:
|
| 200 |
+
audio_info = ""
|
| 201 |
|
| 202 |
+
|
| 203 |
+
|
| 204 |
# Step 3: Generate structured recipe information using Gemini API synchronously
|
| 205 |
+
structured_data = query_gemini_api(video_info, audio_info)
|
| 206 |
|
| 207 |
return jsonify(structured_data)
|
| 208 |
|
|
|
|
| 220 |
|
| 221 |
|
| 222 |
|
| 223 |
+
def query_gemini_api(video_transcription, audio_transcription):
|
| 224 |
"""
|
| 225 |
Send transcription text to Gemini API and fetch structured recipe information synchronously.
|
| 226 |
"""
|
| 227 |
try:
|
| 228 |
# Define the structured prompt
|
| 229 |
prompt = (
|
| 230 |
+
"Analyze the provided cooking video and audio transcription combined and based on the combined information extract the following structured information:\n"
|
| 231 |
"1. Recipe Name: Identify the name of the dish being prepared.\n"
|
| 232 |
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
|
| 233 |
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
|
|
|
|
| 238 |
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
|
| 239 |
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
|
| 240 |
"Also, make sure not to provide anything else or any other information or warning or text apart from the above things mentioned."
|
| 241 |
+
f"Text: {audio_transcription}\n"
|
| 242 |
+
f"Text: {video_transcription}\n"
|
| 243 |
+
|
| 244 |
)
|
| 245 |
|
| 246 |
# Prepare the payload and headers
|