Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import time
|
| 5 |
+
import dotenv
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
from langchain_core.prompts import PromptTemplate
|
| 12 |
+
from langchain.chains import RetrievalQA
|
| 13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 14 |
+
from langchain_community.vectorstores import Pinecone
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
import pinecone
|
| 18 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
| 19 |
+
|
| 20 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 21 |
+
from langchain_core.prompts import PromptTemplate
|
| 22 |
+
from langchain_community.llms import CTransformers
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
load_dotenv()
|
| 27 |
+
st.set_page_config(page_title= "Medical chatbot", page_icon=":bot:")
|
| 28 |
+
|
| 29 |
+
if "chat_history" not in st.session_state:
|
| 30 |
+
st.session_state.chat_history = []
|
| 31 |
+
|
| 32 |
+
PINECONE_API_KEY = "1bae0d8e-019e-4e87-8080-ecf523e5f25f"
|
| 33 |
+
def get_response(user_query):
|
| 34 |
+
# Initilize the prompt
|
| 35 |
+
# create prompt template, integrate chatHistory component as well
|
| 36 |
+
prompt_template = """
|
| 37 |
+
Use the following pieces of information to answer the user's question.
|
| 38 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 39 |
+
|
| 40 |
+
Context: {context}
|
| 41 |
+
Question: {question}
|
| 42 |
+
|
| 43 |
+
Only return the helpful answer below nothing else.
|
| 44 |
+
Helpful Answer:
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
PROMPT = PromptTemplate(template = prompt_template, input_variables=["context", "question"])
|
| 48 |
+
chain_type_kwargs = {"prompt":PROMPT}
|
| 49 |
+
|
| 50 |
+
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML", model_type="llama", config={'max_new_tokens': 1024, 'temperature': 1})
|
| 51 |
+
|
| 52 |
+
index_name = "medical-chatbot"
|
| 53 |
+
index=pinecone.Index(api_key=PINECONE_API_KEY, host="https://medical-chatbot-pv4ded8.svc.aped-4627-b74a.pinecone.io")
|
| 54 |
+
|
| 55 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 56 |
+
# Create Pinecone retriever
|
| 57 |
+
vector_store = Pinecone(index, embeddings, text_key="text")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
qa = RetrievalQA.from_chain_type(llm, chain_type="stuff",retriever = vector_store.as_retriever(search_kwargs={"k": 2}), chain_type_kwargs=chain_type_kwargs)
|
| 61 |
+
answer = qa.invoke({"query":user_query, "context": st.session_state.chat_history})
|
| 62 |
+
|
| 63 |
+
return answer
|
| 64 |
+
# answer = vector_store.similarity_search(user_query, k=3)
|
| 65 |
+
# return answer.stream().get("answer")
|
| 66 |
+
|
| 67 |
+
# Function to simulate typing effect
|
| 68 |
+
def type_effect(text):
|
| 69 |
+
for char in text:
|
| 70 |
+
st.write(char)
|
| 71 |
+
time.sleep(0.05)
|
| 72 |
+
st.write("")
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
st.title("Medical chatbot")
|
| 76 |
+
|
| 77 |
+
st.write("Welcome to the medical chatbot. Please enter your symptoms below and I will try to help you.")
|
| 78 |
+
|
| 79 |
+
if "chat_history" in st.session_state:
|
| 80 |
+
for message in st.session_state.chat_history:
|
| 81 |
+
if "user" in message:
|
| 82 |
+
with st.chat_message("Human"):
|
| 83 |
+
st.markdown(message["user"])
|
| 84 |
+
elif "bot" in message:
|
| 85 |
+
with st.chat_message("AI"):
|
| 86 |
+
st.markdown(message["bot"])
|
| 87 |
+
|
| 88 |
+
user_query = st.chat_input("Enter your symptoms here")
|
| 89 |
+
if user_query is not None and user_query != "":
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
with st.chat_message("Human"):
|
| 93 |
+
st.markdown(user_query)
|
| 94 |
+
st.session_state.chat_history.append({"user": user_query})
|
| 95 |
+
|
| 96 |
+
with st.chat_message("AI"):
|
| 97 |
+
# =""
|
| 98 |
+
# for message in st.session_state.chat_history:
|
| 99 |
+
# if "user" in message:
|
| 100 |
+
# += f"User: {message['user']}\n"
|
| 101 |
+
# elif "bot" in message:
|
| 102 |
+
# += f"Bot: {message['bot']}\n"
|
| 103 |
+
|
| 104 |
+
ai_response = get_response(user_query)
|
| 105 |
+
# st.write(type(ai_response))
|
| 106 |
+
result = ai_response["result"]
|
| 107 |
+
# type_effect(result)
|
| 108 |
+
st.markdown(result)
|
| 109 |
+
|
| 110 |
+
# Get the response from backend and present it here
|
| 111 |
+
st.session_state.chat_history.append({"bot": result})
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# import os
|
| 116 |
+
# import time
|
| 117 |
+
# import dotenv
|
| 118 |
+
# import streamlit as st
|
| 119 |
+
# from dotenv import load_dotenv
|
| 120 |
+
|
| 121 |
+
# from langchain import PromptTemplate
|
| 122 |
+
# from langchain.chains import RetrievalQA
|
| 123 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
| 124 |
+
# from langchain.vectorstores import Pinecone
|
| 125 |
+
|
| 126 |
+
# import pinecone
|
| 127 |
+
# from langchain.llms import CTransformers
|
| 128 |
+
|
| 129 |
+
# # Load environment variables
|
| 130 |
+
# load_dotenv()
|
| 131 |
+
|
| 132 |
+
# # Initialize Streamlit page config
|
| 133 |
+
# st.set_page_config(page_title="Medical Chatbot", page_icon=":bot:")
|
| 134 |
+
|
| 135 |
+
# # Initialize chat history in session state
|
| 136 |
+
# if "chat_history" not in st.session_state:
|
| 137 |
+
# st.session_state.chat_history = []
|
| 138 |
+
|
| 139 |
+
# PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
| 140 |
+
# HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
|
| 141 |
+
|
| 142 |
+
# # Cache models and vector store initialization
|
| 143 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
| 144 |
+
# @st.cache_resource
|
| 145 |
+
# def initialize_models():
|
| 146 |
+
# # Load language model
|
| 147 |
+
|
| 148 |
+
# llm = CTransformers(model="model/llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama", config={'max_new_tokens': 1024, 'temperature': 1})
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# # Initialize Pinecone index
|
| 152 |
+
# index = pinecone.Index(api_key=PINECONE_API_KEY, host="https://medical-chatbot-pv4ded8.svc.aped-4627-b74a.pinecone.io")
|
| 153 |
+
|
| 154 |
+
# # Initialize embeddings
|
| 155 |
+
|
| 156 |
+
# # Create Pinecone retriever
|
| 157 |
+
# vector_store = Pinecone(index, embeddings, text_key="text")
|
| 158 |
+
|
| 159 |
+
# return llm, vector_store
|
| 160 |
+
|
| 161 |
+
# llm, vector_store = initialize_models()
|
| 162 |
+
|
| 163 |
+
# # Define prompt template
|
| 164 |
+
# prompt_template = """
|
| 165 |
+
# Use the following pieces of information to answer the user's question.
|
| 166 |
+
# If you don't know the answer, just say that I don't know, don't try to make up an answer.
|
| 167 |
+
|
| 168 |
+
# Context: {context}
|
| 169 |
+
# Question: {question}
|
| 170 |
+
|
| 171 |
+
# Only return the helpful answer below nothing else.
|
| 172 |
+
# Helpful Answer:
|
| 173 |
+
# """
|
| 174 |
+
# PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
| 175 |
+
|
| 176 |
+
# # Cache QA chain initialization
|
| 177 |
+
# @st.cache_resource
|
| 178 |
+
# def _initialize_qa(_llm, _vector_store):
|
| 179 |
+
# return RetrievalQA.from_chain_type(
|
| 180 |
+
# _llm,
|
| 181 |
+
# chain_type="stuff",
|
| 182 |
+
# retriever=_vector_store.as_retriever(search_kwargs={"k": 2}),
|
| 183 |
+
# chain_type_kwargs={"prompt": PROMPT}
|
| 184 |
+
# )
|
| 185 |
+
|
| 186 |
+
# qa = _initialize_qa(llm, vector_store)
|
| 187 |
+
|
| 188 |
+
# def get_response(user_query):
|
| 189 |
+
# # chat_context = "\n".join([f"User: {msg['user']}" if 'user' in msg else f"Bot: {msg['bot']}" for msg in st.session_state.chat_history])
|
| 190 |
+
# answer = qa.invoke({"query": user_query, "context": st.session_state.chat_history})
|
| 191 |
+
# return answer
|
| 192 |
+
|
| 193 |
+
# # Function to simulate typing effect
|
| 194 |
+
# # def type_effect(text):
|
| 195 |
+
# # for char in text:
|
| 196 |
+
# # st.write(char, end="")
|
| 197 |
+
# # time.sleep(0.05)
|
| 198 |
+
# # st.write("")
|
| 199 |
+
|
| 200 |
+
# # Streamlit UI
|
| 201 |
+
# st.title("Medical Chatbot")
|
| 202 |
+
# st.write("Welcome to the medical chatbot. Please enter your symptoms below and I will try to help you.")
|
| 203 |
+
|
| 204 |
+
# # Display chat history
|
| 205 |
+
# for message in st.session_state.chat_history:
|
| 206 |
+
# if "user" in message:
|
| 207 |
+
# with st.chat_message("Human"):
|
| 208 |
+
# st.markdown(message["user"])
|
| 209 |
+
# elif "bot" in message:
|
| 210 |
+
# with st.chat_message("AI"):
|
| 211 |
+
# st.markdown(message["bot"])
|
| 212 |
+
|
| 213 |
+
# # Chat input and response handling
|
| 214 |
+
# user_query = st.chat_input("Enter your symptoms here")
|
| 215 |
+
# if user_query:
|
| 216 |
+
# with st.chat_message("Human"):
|
| 217 |
+
# st.markdown(user_query)
|
| 218 |
+
# st.session_state.chat_history.append({"user": user_query})
|
| 219 |
+
|
| 220 |
+
# with st.chat_message("AI"):
|
| 221 |
+
# ai_response = get_response(user_query)
|
| 222 |
+
# result = ai_response["result"]
|
| 223 |
+
# st.markdown(result)
|
| 224 |
+
# st.session_state.chat_history.append({"bot": result})
|