Update app.py
Browse files
app.py
CHANGED
|
@@ -19,6 +19,7 @@ from pyabsa import (
|
|
| 19 |
)
|
| 20 |
from pyabsa import ABSAInstruction
|
| 21 |
from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
|
|
|
|
| 22 |
|
| 23 |
download_all_available_datasets()
|
| 24 |
|
|
@@ -65,7 +66,7 @@ def get_aste_example(dataset):
|
|
| 65 |
|
| 66 |
|
| 67 |
def get_acos_example(dataset):
|
| 68 |
-
task =
|
| 69 |
dataset_file = detect_infer_dataset(acos_dataset_items[dataset], task)
|
| 70 |
|
| 71 |
for fname in dataset_file:
|
|
@@ -78,14 +79,16 @@ def get_acos_example(dataset):
|
|
| 78 |
fin = open(f, "r", encoding="utf-8")
|
| 79 |
lines.extend(fin.readlines())
|
| 80 |
fin.close()
|
| 81 |
-
lines = [line.split(
|
| 82 |
return sorted(set(lines), key=lines.index)
|
| 83 |
|
| 84 |
|
| 85 |
try:
|
| 86 |
from pyabsa import AspectTermExtraction as ATEPC
|
| 87 |
|
| 88 |
-
atepc_dataset_items = {
|
|
|
|
|
|
|
| 89 |
atepc_dataset_dict = {
|
| 90 |
dataset.name: get_atepc_example(dataset.name)
|
| 91 |
for dataset in ATEPC.ATEPCDatasetList()
|
|
@@ -102,7 +105,8 @@ try:
|
|
| 102 |
|
| 103 |
aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()}
|
| 104 |
aste_dataset_dict = {
|
| 105 |
-
dataset.name: get_aste_example(dataset.name)
|
|
|
|
| 106 |
}
|
| 107 |
triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="multilingual")
|
| 108 |
except Exception as e:
|
|
@@ -114,9 +118,12 @@ except Exception as e:
|
|
| 114 |
try:
|
| 115 |
from pyabsa import ABSAInstruction
|
| 116 |
|
| 117 |
-
acos_dataset_items = {
|
|
|
|
|
|
|
| 118 |
acos_dataset_dict = {
|
| 119 |
-
dataset.name: get_acos_example(dataset.name)
|
|
|
|
| 120 |
}
|
| 121 |
quadruple_extractor = ABSAInstruction.ABSAGenerator("multilingual")
|
| 122 |
except Exception as e:
|
|
@@ -156,7 +163,7 @@ def perform_aste_inference(text, dataset):
|
|
| 156 |
|
| 157 |
pred_triplets = pd.DataFrame(result["Triplets"])
|
| 158 |
true_triplets = pd.DataFrame(result["True Triplets"])
|
| 159 |
-
return pred_triplets, true_triplets, "{}".format(text)
|
| 160 |
|
| 161 |
|
| 162 |
def perform_acos_inference(text, dataset):
|
|
@@ -165,108 +172,190 @@ def perform_acos_inference(text, dataset):
|
|
| 165 |
random.randint(0, len(acos_dataset_dict[dataset]) - 1)
|
| 166 |
]
|
| 167 |
|
| 168 |
-
raw_output = quadruple_extractor.predict(text.split(
|
| 169 |
|
| 170 |
-
result = raw_output[
|
| 171 |
result = pd.DataFrame(result)
|
| 172 |
return result, text
|
| 173 |
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
| 179 |
|
| 180 |
-
if quadruple_extractor:
|
| 181 |
-
with gr.Row():
|
| 182 |
-
with gr.Column():
|
| 183 |
-
gr.Markdown("# <p align='center'> ABSA Quadruple Extraction (Experimental) </p>")
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
acos_inference_button = gr.Button("Let's go!")
|
| 195 |
|
| 196 |
-
acos_output_text = gr.TextArea(label="Example:")
|
| 197 |
-
acos_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
inputs=[acos_input_sentence, acos_dataset_ids],
|
| 202 |
-
outputs=[acos_output_pred_df, acos_output_text],
|
| 203 |
-
)
|
| 204 |
-
with gr.Row():
|
| 205 |
-
if triplet_extractor:
|
| 206 |
-
with gr.Column():
|
| 207 |
-
gr.Markdown("# <p align='center'>Aspect Sentiment Triplet Extraction !</p>")
|
| 208 |
|
|
|
|
|
|
|
|
|
|
| 209 |
with gr.Row():
|
| 210 |
with gr.Column():
|
| 211 |
-
aste_input_sentence = gr.Textbox(
|
| 212 |
-
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
| 213 |
-
label="Example:",
|
| 214 |
-
)
|
| 215 |
gr.Markdown(
|
| 216 |
-
"
|
| 217 |
-
)
|
| 218 |
-
aste_dataset_ids = gr.Radio(
|
| 219 |
-
choices=[dataset.name for dataset in ASTE.ASTEDatasetList()[:-1]],
|
| 220 |
-
value="Restaurant14",
|
| 221 |
-
label="Datasets",
|
| 222 |
)
|
| 223 |
-
aste_inference_button = gr.Button("Let's go!")
|
| 224 |
|
| 225 |
-
|
| 226 |
-
aste_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
|
| 227 |
-
aste_output_true_df = gr.DataFrame(label="Original Triplets:")
|
| 228 |
-
|
| 229 |
-
aste_inference_button.click(
|
| 230 |
-
fn=perform_aste_inference,
|
| 231 |
-
inputs=[aste_input_sentence, aste_dataset_ids],
|
| 232 |
-
outputs=[aste_output_pred_df, aste_output_true_df, aste_output_text],
|
| 233 |
-
)
|
| 234 |
-
if aspect_extractor:
|
| 235 |
-
with gr.Column():
|
| 236 |
-
gr.Markdown(
|
| 237 |
-
"# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>"
|
| 238 |
-
)
|
| 239 |
-
with gr.Row():
|
| 240 |
-
with gr.Column():
|
| 241 |
-
atepc_input_sentence = gr.Textbox(
|
| 242 |
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
| 243 |
label="Example:",
|
| 244 |
)
|
| 245 |
-
gr.
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
value="Laptop14",
|
| 251 |
label="Datasets",
|
| 252 |
)
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
fn=
|
| 260 |
-
inputs=[
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
from pyabsa import ABSAInstruction
|
| 21 |
from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
|
| 22 |
+
import requests
|
| 23 |
|
| 24 |
download_all_available_datasets()
|
| 25 |
|
|
|
|
| 66 |
|
| 67 |
|
| 68 |
def get_acos_example(dataset):
|
| 69 |
+
task = "ACOS"
|
| 70 |
dataset_file = detect_infer_dataset(acos_dataset_items[dataset], task)
|
| 71 |
|
| 72 |
for fname in dataset_file:
|
|
|
|
| 79 |
fin = open(f, "r", encoding="utf-8")
|
| 80 |
lines.extend(fin.readlines())
|
| 81 |
fin.close()
|
| 82 |
+
lines = [line.split("####")[0] for line in lines]
|
| 83 |
return sorted(set(lines), key=lines.index)
|
| 84 |
|
| 85 |
|
| 86 |
try:
|
| 87 |
from pyabsa import AspectTermExtraction as ATEPC
|
| 88 |
|
| 89 |
+
atepc_dataset_items = {
|
| 90 |
+
dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()
|
| 91 |
+
}
|
| 92 |
atepc_dataset_dict = {
|
| 93 |
dataset.name: get_atepc_example(dataset.name)
|
| 94 |
for dataset in ATEPC.ATEPCDatasetList()
|
|
|
|
| 105 |
|
| 106 |
aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()}
|
| 107 |
aste_dataset_dict = {
|
| 108 |
+
dataset.name: get_aste_example(dataset.name)
|
| 109 |
+
for dataset in ASTE.ASTEDatasetList()[:-1]
|
| 110 |
}
|
| 111 |
triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="multilingual")
|
| 112 |
except Exception as e:
|
|
|
|
| 118 |
try:
|
| 119 |
from pyabsa import ABSAInstruction
|
| 120 |
|
| 121 |
+
acos_dataset_items = {
|
| 122 |
+
dataset.name: dataset for dataset in ABSAInstruction.ACOSDatasetList()
|
| 123 |
+
}
|
| 124 |
acos_dataset_dict = {
|
| 125 |
+
dataset.name: get_acos_example(dataset.name)
|
| 126 |
+
for dataset in ABSAInstruction.ACOSDatasetList()
|
| 127 |
}
|
| 128 |
quadruple_extractor = ABSAInstruction.ABSAGenerator("multilingual")
|
| 129 |
except Exception as e:
|
|
|
|
| 163 |
|
| 164 |
pred_triplets = pd.DataFrame(result["Triplets"])
|
| 165 |
true_triplets = pd.DataFrame(result["True Triplets"])
|
| 166 |
+
return pred_triplets, true_triplets, "{}".format(text.split("####")[0])
|
| 167 |
|
| 168 |
|
| 169 |
def perform_acos_inference(text, dataset):
|
|
|
|
| 172 |
random.randint(0, len(acos_dataset_dict[dataset]) - 1)
|
| 173 |
]
|
| 174 |
|
| 175 |
+
raw_output = quadruple_extractor.predict(text.split("####")[0], max_length=128)
|
| 176 |
|
| 177 |
+
result = raw_output["Quadruples"]
|
| 178 |
result = pd.DataFrame(result)
|
| 179 |
return result, text
|
| 180 |
|
| 181 |
|
| 182 |
+
def run_demo(text, dataset, task):
|
| 183 |
+
try:
|
| 184 |
+
data = {
|
| 185 |
+
"text": text,
|
| 186 |
+
"dataset": dataset,
|
| 187 |
+
"task": task,
|
| 188 |
+
}
|
| 189 |
+
response = requests.post("https://pyabsa.pagekite.me/api/inference", json=data)
|
| 190 |
+
result = response.json()
|
| 191 |
+
print(response.json())
|
| 192 |
+
if task == "ATEPC":
|
| 193 |
+
return (
|
| 194 |
+
pd.DataFrame(
|
| 195 |
+
{
|
| 196 |
+
"aspect": result["aspect"],
|
| 197 |
+
"sentiment": result["sentiment"],
|
| 198 |
+
# 'probability': result[0]['probs'],
|
| 199 |
+
"confidence": [round(x, 4) for x in result["confidence"]],
|
| 200 |
+
"position": result["position"],
|
| 201 |
+
}
|
| 202 |
+
),
|
| 203 |
+
result["text"],
|
| 204 |
+
)
|
| 205 |
+
elif task == "ASTE":
|
| 206 |
+
return (
|
| 207 |
+
pd.DataFrame(result["pred_triplets"]),
|
| 208 |
+
pd.DataFrame(result["true_triplets"]),
|
| 209 |
+
result["text"],
|
| 210 |
+
)
|
| 211 |
+
elif task == "ACOS":
|
| 212 |
+
return pd.DataFrame(result["Quadruples"]), result["text"]
|
| 213 |
|
| 214 |
+
except Exception as e:
|
| 215 |
+
print(e)
|
| 216 |
+
print("Failed to connect to the server, running locally...")
|
| 217 |
+
return inference(text, dataset, task)
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
def inference(text, dataset, task):
|
| 221 |
+
if task == "ATEPC":
|
| 222 |
+
return perform_atepc_inference(text, dataset)
|
| 223 |
+
elif task == "ASTE":
|
| 224 |
+
return perform_aste_inference(text, dataset)
|
| 225 |
+
elif task == "ACOS":
|
| 226 |
+
return perform_acos_inference(text, dataset)
|
| 227 |
+
else:
|
| 228 |
+
raise Exception("No such task: {}".format(task))
|
|
|
|
| 229 |
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
if __name__ == "__main__":
|
| 232 |
+
demo = gr.Blocks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
with demo:
|
| 235 |
+
with gr.Row():
|
| 236 |
+
if quadruple_extractor:
|
| 237 |
with gr.Row():
|
| 238 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
gr.Markdown(
|
| 240 |
+
"# <p align='center'> ABSA Quadruple Extraction (Experimental) </p>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
)
|
|
|
|
| 242 |
|
| 243 |
+
acos_input_sentence = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
| 245 |
label="Example:",
|
| 246 |
)
|
| 247 |
+
acos_dataset_ids = gr.Radio(
|
| 248 |
+
choices=[
|
| 249 |
+
dataset.name
|
| 250 |
+
for dataset in ABSAInstruction.ACOSDatasetList()
|
| 251 |
+
],
|
| 252 |
value="Laptop14",
|
| 253 |
label="Datasets",
|
| 254 |
)
|
| 255 |
+
acos_inference_button = gr.Button("Let's go!")
|
| 256 |
+
|
| 257 |
+
acos_output_text = gr.TextArea(label="Example:")
|
| 258 |
+
acos_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
|
| 259 |
+
|
| 260 |
+
acos_inference_button.click(
|
| 261 |
+
fn=run_demo,
|
| 262 |
+
inputs=[
|
| 263 |
+
acos_input_sentence,
|
| 264 |
+
acos_dataset_ids,
|
| 265 |
+
gr.Text("ACOS", visible=False),
|
| 266 |
+
],
|
| 267 |
+
outputs=[acos_output_pred_df, acos_output_text],
|
| 268 |
)
|
| 269 |
+
with gr.Row():
|
| 270 |
+
if triplet_extractor:
|
| 271 |
+
with gr.Column():
|
| 272 |
+
gr.Markdown(
|
| 273 |
+
"# <p align='center'>Aspect Sentiment Triplet Extraction !</p>"
|
| 274 |
+
)
|
| 275 |
|
| 276 |
+
with gr.Row():
|
| 277 |
+
with gr.Column():
|
| 278 |
+
aste_input_sentence = gr.Textbox(
|
| 279 |
+
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
| 280 |
+
label="Example:",
|
| 281 |
+
)
|
| 282 |
+
gr.Markdown(
|
| 283 |
+
"You can find code and dataset at [ASTE examples](https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)"
|
| 284 |
+
)
|
| 285 |
+
aste_dataset_ids = gr.Radio(
|
| 286 |
+
choices=[
|
| 287 |
+
dataset.name
|
| 288 |
+
for dataset in ASTE.ASTEDatasetList()[:-1]
|
| 289 |
+
],
|
| 290 |
+
value="Restaurant14",
|
| 291 |
+
label="Datasets",
|
| 292 |
+
)
|
| 293 |
+
aste_inference_button = gr.Button("Let's go!")
|
| 294 |
+
|
| 295 |
+
aste_output_text = gr.TextArea(label="Example:")
|
| 296 |
+
aste_output_pred_df = gr.DataFrame(
|
| 297 |
+
label="Predicted Triplets:"
|
| 298 |
+
)
|
| 299 |
+
aste_output_true_df = gr.DataFrame(
|
| 300 |
+
label="Original Triplets:"
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
aste_inference_button.click(
|
| 304 |
+
fn=run_demo,
|
| 305 |
+
inputs=[
|
| 306 |
+
aste_input_sentence,
|
| 307 |
+
aste_dataset_ids,
|
| 308 |
+
gr.Text("ASTE", visible=False),
|
| 309 |
+
],
|
| 310 |
+
outputs=[
|
| 311 |
+
aste_output_pred_df,
|
| 312 |
+
aste_output_true_df,
|
| 313 |
+
aste_output_text,
|
| 314 |
+
],
|
| 315 |
+
)
|
| 316 |
+
if aspect_extractor:
|
| 317 |
+
with gr.Column():
|
| 318 |
+
gr.Markdown(
|
| 319 |
+
"# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>"
|
| 320 |
+
)
|
| 321 |
+
with gr.Row():
|
| 322 |
+
with gr.Column():
|
| 323 |
+
atepc_input_sentence = gr.Textbox(
|
| 324 |
+
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
| 325 |
+
label="Example:",
|
| 326 |
+
)
|
| 327 |
+
gr.Markdown(
|
| 328 |
+
"You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)"
|
| 329 |
+
)
|
| 330 |
+
atepc_dataset_ids = gr.Radio(
|
| 331 |
+
choices=[
|
| 332 |
+
dataset.name
|
| 333 |
+
for dataset in ATEPC.ATEPCDatasetList()[:-1]
|
| 334 |
+
],
|
| 335 |
+
value="Laptop14",
|
| 336 |
+
label="Datasets",
|
| 337 |
+
)
|
| 338 |
+
atepc_inference_button = gr.Button("Let's go!")
|
| 339 |
+
|
| 340 |
+
atepc_output_text = gr.TextArea(label="Example:")
|
| 341 |
+
atepc_output_df = gr.DataFrame(label="Prediction Results:")
|
| 342 |
+
|
| 343 |
+
atepc_inference_button.click(
|
| 344 |
+
fn=run_demo,
|
| 345 |
+
inputs=[
|
| 346 |
+
atepc_input_sentence,
|
| 347 |
+
atepc_dataset_ids,
|
| 348 |
+
gr.Text("ATEPC", visible=False),
|
| 349 |
+
],
|
| 350 |
+
outputs=[atepc_output_df, atepc_output_text],
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
gr.Markdown(
|
| 354 |
+
"""### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
|
| 355 |
+
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
| 356 |
+
[](https://pepy.tech/project/pyabsa)
|
| 357 |
+
[](https://pepy.tech/project/pyabsa)
|
| 358 |
+
"""
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
demo.launch()
|