Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,33 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import random
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
| 5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
from pyabsa.functional.dataset.dataset_manager import download_datasets_from_github, ABSADatasetList, detect_infer_dataset
|
| 9 |
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
-
dataset_items = {dataset.name: dataset for dataset in ABSADatasetList()}
|
| 13 |
|
| 14 |
-
def
|
| 15 |
-
task =
|
| 16 |
-
dataset_file = detect_infer_dataset(
|
| 17 |
|
| 18 |
for fname in dataset_file:
|
| 19 |
lines = []
|
|
@@ -21,70 +35,152 @@ def get_example(dataset):
|
|
| 21 |
fname = [fname]
|
| 22 |
|
| 23 |
for f in fname:
|
| 24 |
-
print(
|
| 25 |
-
fin = open(f,
|
| 26 |
lines.extend(fin.readlines())
|
| 27 |
fin.close()
|
| 28 |
for i in range(len(lines)):
|
| 29 |
-
lines[i] =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
return sorted(set(lines), key=lines.index)
|
| 31 |
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
-
def
|
| 38 |
if not text:
|
| 39 |
-
text =
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
result =
|
| 42 |
-
pred_sentiment=True)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# 'probability': result[0]['probs'],
|
| 48 |
-
'confidence': [round(x, 4) for x in result[0]['confidence']],
|
| 49 |
-
'position': result[0]['position']
|
| 50 |
-
})
|
| 51 |
-
return result, '{}'.format(text)
|
| 52 |
|
| 53 |
|
| 54 |
demo = gr.Blocks()
|
| 55 |
|
| 56 |
with demo:
|
| 57 |
-
gr.Markdown("# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>")
|
| 58 |
-
gr.Markdown("""### Repo: [PyABSA](https://github.com/yangheng95/PyABSA)
|
| 59 |
-
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
| 60 |
-
## This demo is based on v.1.16.27, while the latest release is [v2.X](https://github.com/yangheng95/PyABSA)
|
| 61 |
-
[](https://pepy.tech/project/pyabsa)
|
| 62 |
-
[](https://pepy.tech/project/pyabsa)
|
| 63 |
-
"""
|
| 64 |
-
)
|
| 65 |
-
gr.Markdown("Your input text should be no more than 80 words, that's the longest text we used in training. However, you can try longer text in self-training ")
|
| 66 |
-
gr.Markdown("**You don't need to split each Chinese (Korean, etc.) token as the provided, just input the natural language text.**")
|
| 67 |
-
output_dfs = []
|
| 68 |
with gr.Row():
|
| 69 |
-
with gr.Column():
|
| 70 |
-
input_sentence = gr.Textbox(placeholder='Leave this box blank and choose a dataset will give you a random example...', label="Example:")
|
| 71 |
-
gr.Markdown("You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2)")
|
| 72 |
-
dataset_ids = gr.Radio(choices=[dataset.name for dataset in ABSADatasetList()[:-1]], value='Laptop14', label="Datasets")
|
| 73 |
-
inference_button = gr.Button("Let's go!")
|
| 74 |
-
gr.Markdown("There is a [demo](https://huggingface.co/spaces/yangheng/PyABSA-ATEPC-Chinese) specialized for the Chinese langauge")
|
| 75 |
-
gr.Markdown("This demo support many other language as well, you can try and explore the results of other languages by yourself.")
|
| 76 |
|
| 77 |
with gr.Column():
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
demo.launch()
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# file: app.py
|
| 3 |
+
# time: 17:08 2023/3/6
|
| 4 |
+
# author: YANG, HENG <hy345@exeter.ac.uk> (杨恒)
|
| 5 |
+
# github: https://github.com/yangheng95
|
| 6 |
+
# huggingface: https://huggingface.co/yangheng
|
| 7 |
+
# google scholar: https://scholar.google.com/citations?user=NPq5a_0AAAAJ&hl=en
|
| 8 |
+
# Copyright (C) 2023. All Rights Reserved.
|
| 9 |
+
|
| 10 |
import random
|
| 11 |
import gradio as gr
|
| 12 |
import pandas as pd
|
| 13 |
+
from pyabsa import (
|
| 14 |
+
download_all_available_datasets,
|
| 15 |
+
AspectTermExtraction as ATEPC,
|
| 16 |
+
TaskCodeOption,
|
| 17 |
+
available_checkpoints,
|
| 18 |
+
)
|
| 19 |
+
from pyabsa import AspectSentimentTripletExtraction as ASTE
|
| 20 |
+
from pyabsa.utils.data_utils.dataset_manager import detect_infer_dataset
|
| 21 |
|
| 22 |
+
download_all_available_datasets()
|
|
|
|
| 23 |
|
| 24 |
+
atepc_dataset_items = {dataset.name: dataset for dataset in ATEPC.ATEPCDatasetList()}
|
| 25 |
+
aste_dataset_items = {dataset.name: dataset for dataset in ASTE.ASTEDatasetList()}
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
+
def get_atepc_example(dataset):
|
| 29 |
+
task = TaskCodeOption.Aspect_Polarity_Classification
|
| 30 |
+
dataset_file = detect_infer_dataset(atepc_dataset_items[dataset], task)
|
| 31 |
|
| 32 |
for fname in dataset_file:
|
| 33 |
lines = []
|
|
|
|
| 35 |
fname = [fname]
|
| 36 |
|
| 37 |
for f in fname:
|
| 38 |
+
print("loading: {}".format(f))
|
| 39 |
+
fin = open(f, "r", encoding="utf-8")
|
| 40 |
lines.extend(fin.readlines())
|
| 41 |
fin.close()
|
| 42 |
for i in range(len(lines)):
|
| 43 |
+
lines[i] = (
|
| 44 |
+
lines[i][: lines[i].find("$LABEL$")]
|
| 45 |
+
.replace("[B-ASP]", "")
|
| 46 |
+
.replace("[E-ASP]", "")
|
| 47 |
+
.strip()
|
| 48 |
+
)
|
| 49 |
+
return sorted(set(lines), key=lines.index)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_aste_example(dataset):
|
| 53 |
+
task = TaskCodeOption.Aspect_Sentiment_Triplet_Extraction
|
| 54 |
+
dataset_file = detect_infer_dataset(aste_dataset_items[dataset], task)
|
| 55 |
+
|
| 56 |
+
for fname in dataset_file:
|
| 57 |
+
lines = []
|
| 58 |
+
if isinstance(fname, str):
|
| 59 |
+
fname = [fname]
|
| 60 |
+
|
| 61 |
+
for f in fname:
|
| 62 |
+
print("loading: {}".format(f))
|
| 63 |
+
fin = open(f, "r", encoding="utf-8")
|
| 64 |
+
lines.extend(fin.readlines())
|
| 65 |
+
fin.close()
|
| 66 |
return sorted(set(lines), key=lines.index)
|
| 67 |
|
| 68 |
|
| 69 |
+
available_checkpoints("ASTE", True)
|
| 70 |
+
|
| 71 |
+
atepc_dataset_dict = {
|
| 72 |
+
dataset.name: get_atepc_example(dataset.name)
|
| 73 |
+
for dataset in ATEPC.ATEPCDatasetList()
|
| 74 |
+
}
|
| 75 |
+
aspect_extractor = ATEPC.AspectExtractor(checkpoint="multilingual")
|
| 76 |
+
|
| 77 |
+
aste_dataset_dict = {
|
| 78 |
+
dataset.name: get_aste_example(dataset.name) for dataset in ASTE.ASTEDatasetList()
|
| 79 |
+
}
|
| 80 |
+
triplet_extractor = ASTE.AspectSentimentTripletExtractor(checkpoint="english")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def perform_atepc_inference(text, dataset):
|
| 84 |
+
if not text:
|
| 85 |
+
text = atepc_dataset_dict[dataset][
|
| 86 |
+
random.randint(0, len(atepc_dataset_dict[dataset]) - 1)
|
| 87 |
+
]
|
| 88 |
+
|
| 89 |
+
result = aspect_extractor.predict(text, pred_sentiment=True)
|
| 90 |
+
|
| 91 |
+
result = pd.DataFrame(
|
| 92 |
+
{
|
| 93 |
+
"aspect": result["aspect"],
|
| 94 |
+
"sentiment": result["sentiment"],
|
| 95 |
+
# 'probability': result[0]['probs'],
|
| 96 |
+
"confidence": [round(x, 4) for x in result["confidence"]],
|
| 97 |
+
"position": result["position"],
|
| 98 |
+
}
|
| 99 |
+
)
|
| 100 |
+
return result, "{}".format(text)
|
| 101 |
|
| 102 |
|
| 103 |
+
def perform_aste_inference(text, dataset):
|
| 104 |
if not text:
|
| 105 |
+
text = aste_dataset_dict[dataset][
|
| 106 |
+
random.randint(0, len(aste_dataset_dict[dataset]) - 1)
|
| 107 |
+
]
|
| 108 |
|
| 109 |
+
result = triplet_extractor.predict(text)
|
|
|
|
| 110 |
|
| 111 |
+
pred_triplets = pd.DataFrame(result["Triplets"])
|
| 112 |
+
true_triplets = pd.DataFrame(result["True Triplets"])
|
| 113 |
+
return pred_triplets, true_triplets, "{}".format(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
demo = gr.Blocks()
|
| 117 |
|
| 118 |
with demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
with gr.Column():
|
| 122 |
+
gr.Markdown("# <p align='center'>Aspect Sentiment Triplet Extraction !</p>")
|
| 123 |
+
|
| 124 |
+
with gr.Row():
|
| 125 |
+
with gr.Column():
|
| 126 |
+
aste_input_sentence = gr.Textbox(
|
| 127 |
+
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
| 128 |
+
label="Example:",
|
| 129 |
+
)
|
| 130 |
+
gr.Markdown(
|
| 131 |
+
"You can find code and dataset at [ASTE examples](https://github.com/yangheng95/PyABSA/tree/v2/examples-v2/aspect_sentiment_triplet_extration)"
|
| 132 |
+
)
|
| 133 |
+
aste_dataset_ids = gr.Radio(
|
| 134 |
+
choices=[dataset.name for dataset in ASTE.ASTEDatasetList()[:-1]],
|
| 135 |
+
value="Restaurant14",
|
| 136 |
+
label="Datasets",
|
| 137 |
+
)
|
| 138 |
+
aste_inference_button = gr.Button("Let's go!")
|
| 139 |
+
|
| 140 |
+
aste_output_text = gr.TextArea(label="Example:")
|
| 141 |
+
aste_output_pred_df = gr.DataFrame(label="Predicted Triplets:")
|
| 142 |
+
aste_output_true_df = gr.DataFrame(label="Original Triplets:")
|
| 143 |
+
|
| 144 |
+
aste_inference_button.click(
|
| 145 |
+
fn=perform_aste_inference,
|
| 146 |
+
inputs=[aste_input_sentence, aste_dataset_ids],
|
| 147 |
+
outputs=[aste_output_pred_df, aste_output_true_df, aste_output_text],
|
| 148 |
+
)
|
| 149 |
|
| 150 |
+
with gr.Column():
|
| 151 |
+
gr.Markdown(
|
| 152 |
+
"# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>"
|
| 153 |
+
)
|
| 154 |
+
with gr.Row():
|
| 155 |
+
with gr.Column():
|
| 156 |
+
atepc_input_sentence = gr.Textbox(
|
| 157 |
+
placeholder="Leave this box blank and choose a dataset will give you a random example...",
|
| 158 |
+
label="Example:",
|
| 159 |
+
)
|
| 160 |
+
gr.Markdown(
|
| 161 |
+
"You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)"
|
| 162 |
+
)
|
| 163 |
+
atepc_dataset_ids = gr.Radio(
|
| 164 |
+
choices=[dataset.name for dataset in ATEPC.ATEPCDatasetList()[:-1]],
|
| 165 |
+
value="Laptop14",
|
| 166 |
+
label="Datasets",
|
| 167 |
+
)
|
| 168 |
+
atepc_inference_button = gr.Button("Let's go!")
|
| 169 |
+
|
| 170 |
+
atepc_output_text = gr.TextArea(label="Example:")
|
| 171 |
+
atepc_output_df = gr.DataFrame(label="Prediction Results:")
|
| 172 |
+
|
| 173 |
+
atepc_inference_button.click(
|
| 174 |
+
fn=perform_atepc_inference,
|
| 175 |
+
inputs=[atepc_input_sentence, atepc_dataset_ids],
|
| 176 |
+
outputs=[atepc_output_df, atepc_output_text],
|
| 177 |
+
)
|
| 178 |
+
gr.Markdown(
|
| 179 |
+
"""### GitHub Repo: [PyABSA V2](https://github.com/yangheng95/PyABSA)
|
| 180 |
+
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒)
|
| 181 |
+
[](https://pepy.tech/project/pyabsa)
|
| 182 |
+
[](https://pepy.tech/project/pyabsa)
|
| 183 |
+
"""
|
| 184 |
+
)
|
| 185 |
|
| 186 |
demo.launch()
|