Spaces:
Build error
Build error
File size: 7,069 Bytes
4b26fd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import base64, os
import json
import torch
import gradio as gr
from typing import Optional
from PIL import Image, ImageDraw
import numpy as np
import matplotlib.pyplot as plt
from qwen_vl_utils import process_vision_info
from datasets import load_dataset
from transformers import AutoProcessor
from gui_actor.constants import chat_template
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference
MAX_PIXELS = 3200 * 1800
def resize_image(image, resize_to_pixels=MAX_PIXELS):
image_width, image_height = image.size
if (resize_to_pixels is not None) and ((image_width * image_height) != resize_to_pixels):
resize_ratio = (resize_to_pixels / (image_width * image_height)) ** 0.5
image_width_resized, image_height_resized = int(image_width * resize_ratio), int(image_height * resize_ratio)
image = image.resize((image_width_resized, image_height_resized))
return image
@torch.inference_mode()
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
overlay_draw = ImageDraw.Draw(overlay)
x, y = point
overlay_draw.ellipse(
[(x - radius, y - radius), (x + radius, y + radius)],
outline=color,
width=5
)
image = image.convert('RGBA')
combined = Image.alpha_composite(image, overlay)
combined = combined.convert('RGB')
return combined
@torch.inference_mode()
def get_attn_map(image, attn_scores, n_width, n_height):
w, h = image.size
scores = np.array(attn_scores[0]).reshape(n_height, n_width)
scores_norm = (scores - scores.min()) / (scores.max() - scores.min())
score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST)
colormap = plt.get_cmap('jet')
colored_score_map = colormap(np.array(score_map) / 255.0)
colored_score_map = (colored_score_map[:, :, :3] * 255).astype(np.uint8)
colored_overlay = Image.fromarray(colored_score_map)
blended = Image.blend(image, colored_overlay, alpha=0.3)
return blended
# 加载模型
if torch.cuda.is_available():
model_name_or_path = "microsoft/GUI-Actor-7B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cuda:0",
attn_implementation="flash_attention_2"
).eval()
else:
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cpu"
).eval()
title = "GUI-Actor"
header = """
<div align="center">
<h1 style="padding-bottom: 10px; padding-top: 10px;">🎯 <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1>
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden<br>
Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao<br/>
</div>
<div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;">
<a href="https://microsoft.github.io/GUI-Actor/">🌐 Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">📄 arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">💻 Github Repo</a><br/>
</div>
</div>
"""
theme = "soft"
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
#anno-img .mask.active {opacity: 0.7}"""
@torch.inference_mode()
def process(image, instruction):
# 调整图像大小
w, h = image.size
if w * h > MAX_PIXELS:
image = resize_image(image)
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click(<your_special_token_here>).",
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{
"type": "text",
"text": instruction,
},
],
},
]
try:
pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3)
except Exception as e:
print(e)
return image, f"Error: {e}", None
px, py = pred["topk_points"][0]
output_coord = f"({px:.4f}, {py:.4f})"
img_with_point = draw_point(image, (px * w, py * h))
n_width, n_height = pred["n_width"], pred["n_height"]
attn_scores = pred["attn_scores"]
att_map = get_attn_map(image, attn_scores, n_width, n_height)
return img_with_point, output_coord, att_map
with gr.Blocks(title=title, css=css) as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type='pil', label='Upload image')
input_instruction = gr.Textbox(label='Instruction', placeholder='Text your (low-level) instruction here')
submit_button = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
with gr.Accordion('Detailed prediction'):
pred_xy = gr.Textbox(label='Predicted Coordinates', placeholder='(x, y)')
att_map = gr.Image(type='pil', label='Attention Map')
submit_button.click(
fn=process,
inputs=[
input_image,
input_instruction
],
outputs=[image_with_point, pred_xy, att_map]
)
# 关键修改:仅在本地9876端口启动服务,不启用公网转发
demo.queue().launch(
server_port=9876, # 指定端口为9876
server_name='127.0.0.1',# 仅本地可访问(如需局域网访问可改为'0.0.0.0')
share=False # 禁用公网转发服务,避免临时链接
) |