Spaces:
Build error
Build error
| import base64, os | |
| import json | |
| import torch | |
| import gradio as gr | |
| import argparse # 新增:导入argparse | |
| from typing import Optional | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from qwen_vl_utils import process_vision_info | |
| from datasets import load_dataset | |
| from transformers import AutoProcessor | |
| from gui_actor.constants import chat_template | |
| from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer | |
| from gui_actor.inference import inference | |
| MAX_PIXELS = 3200 * 1800 | |
| def resize_image(image, resize_to_pixels=MAX_PIXELS): | |
| image_width, image_height = image.size | |
| if (resize_to_pixels is not None) and ((image_width * image_height) != resize_to_pixels): | |
| resize_ratio = (resize_to_pixels / (image_width * image_height)) ** 0.5 | |
| image_width_resized, image_height_resized = int(image_width * resize_ratio), int(image_height * resize_ratio) | |
| image = image.resize((image_width_resized, image_height_resized)) | |
| return image | |
| def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)): | |
| overlay = Image.new('RGBA', image.size, (255, 255, 255, 0)) | |
| overlay_draw = ImageDraw.Draw(overlay) | |
| x, y = point | |
| overlay_draw.ellipse( | |
| [(x - radius, y - radius), (x + radius, y + radius)], | |
| outline=color, | |
| width=5 | |
| ) | |
| image = image.convert('RGBA') | |
| combined = Image.alpha_composite(image, overlay) | |
| combined = combined.convert('RGB') | |
| return combined | |
| def get_attn_map(image, attn_scores, n_width, n_height): | |
| w, h = image.size | |
| scores = np.array(attn_scores[0]).reshape(n_height, n_width) | |
| scores_norm = (scores - scores.min()) / (scores.max() - scores.min()) | |
| score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST) | |
| colormap = plt.get_cmap('jet') | |
| colored_score_map = colormap(np.array(score_map) / 255.0) | |
| colored_score_map = (colored_score_map[:, :, :3] * 255).astype(np.uint8) | |
| colored_overlay = Image.fromarray(colored_score_map) | |
| blended = Image.blend(image, colored_overlay, alpha=0.3) | |
| return blended | |
| # 加载模型 | |
| if torch.cuda.is_available(): | |
| model_name_or_path = "microsoft/GUI-Actor-7B-Qwen2.5-VL" | |
| data_processor = AutoProcessor.from_pretrained(model_name_or_path) | |
| tokenizer = data_processor.tokenizer | |
| model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained( | |
| model_name_or_path, | |
| torch_dtype=torch.bfloat16, | |
| device_map="cuda:0", | |
| attn_implementation="flash_attention_2" | |
| ).eval() | |
| else: | |
| model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL" | |
| data_processor = AutoProcessor.from_pretrained(model_name_or_path) | |
| tokenizer = data_processor.tokenizer | |
| model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained( | |
| model_name_or_path, | |
| torch_dtype=torch.bfloat16, | |
| device_map="cpu" | |
| ).eval() | |
| title = "GUI-Actor" | |
| header = """ | |
| <div align="center"> | |
| <h1 style="padding-bottom: 10px; padding-top: 10px;">🎯 <strong>GUI-Actor</strong>: Coordinate-Free Visual Grounding for GUI Agents</h1> | |
| <div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;"> | |
| Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden<br> | |
| Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao<br/> | |
| </div> | |
| <div style="padding-bottom: 10px; padding-top: 10px; font-size: 16px;"> | |
| <a href="https://microsoft.github.io/GUI-Actor/">🌐 Project Page</a> | <a href="https://arxiv.org/abs/2403.12968">📄 arXiv Paper</a> | <a href="https://github.com/microsoft/GUI-Actor">💻 Github Repo</a><br/> | |
| </div> | |
| </div> | |
| """ | |
| theme = "soft" | |
| css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;} | |
| #anno-img .mask.active {opacity: 0.7}""" | |
| def process(image, instruction): | |
| # 调整图像大小 | |
| w, h = image.size | |
| if w * h > MAX_PIXELS: | |
| image = resize_image(image) | |
| conversation = [ | |
| { | |
| "role": "system", | |
| "content": [ | |
| { | |
| "type": "text", | |
| "text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click(<your_special_token_here>).", | |
| } | |
| ] | |
| }, | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| { | |
| "type": "text", | |
| "text": instruction, | |
| }, | |
| ], | |
| }, | |
| ] | |
| try: | |
| pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3) | |
| except Exception as e: | |
| print(e) | |
| return image, f"Error: {e}", None | |
| px, py = pred["topk_points"][0] | |
| output_coord = f"({px:.4f}, {py:.4f})" | |
| img_with_point = draw_point(image, (px * w, py * h)) | |
| n_width, n_height = pred["n_width"], pred["n_height"] | |
| attn_scores = pred["attn_scores"] | |
| att_map = get_attn_map(image, attn_scores, n_width, n_height) | |
| return img_with_point, output_coord, att_map | |
| def main(): # 新增:主函数,使用argparse解析参数 | |
| parser = argparse.ArgumentParser(description="GUI-Actor 服务") | |
| parser.add_argument("--port", type=int, default=9876, help="服务端口(默认:9876)") | |
| parser.add_argument("--host", default="localhost", help="服务主机(默认:localhost)") | |
| args = parser.parse_args() | |
| # 创建Gradio界面 | |
| with gr.Blocks(title=title, css=css) as demo: | |
| gr.Markdown(header) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image( | |
| type='pil', label='Upload image') | |
| input_instruction = gr.Textbox(label='Instruction', placeholder='Text your (low-level) instruction here') | |
| submit_button = gr.Button( | |
| value='Submit', variant='primary') | |
| with gr.Column(): | |
| image_with_point = gr.Image(type='pil', label='Image with Point (red circle)') | |
| with gr.Accordion('Detailed prediction'): | |
| pred_xy = gr.Textbox(label='Predicted Coordinates', placeholder='(x, y)') | |
| att_map = gr.Image(type='pil', label='Attention Map') | |
| submit_button.click( | |
| fn=process, | |
| inputs=[ | |
| input_image, | |
| input_instruction | |
| ], | |
| outputs=[image_with_point, pred_xy, att_map] | |
| ) | |
| # 启动服务(使用解析的参数) | |
| print(f"🚀 GUI-Actor 服务启动中...") | |
| print(f"🌐 访问地址: http://{args.host}:{args.port}") | |
| demo.queue().launch( | |
| server_name=args.host, | |
| server_port=args.port, | |
| share=True | |
| ) | |
| if __name__ == "__main__": # 新增:程序入口 | |
| main() |