import base64, os
import json
import torch
import gradio as gr
import argparse # 新增:导入argparse
from typing import Optional
from PIL import Image, ImageDraw
import numpy as np
import matplotlib.pyplot as plt
from qwen_vl_utils import process_vision_info
from datasets import load_dataset
from transformers import AutoProcessor
from gui_actor.constants import chat_template
from gui_actor.modeling_qwen25vl import Qwen2_5_VLForConditionalGenerationWithPointer
from gui_actor.inference import inference
MAX_PIXELS = 3200 * 1800
def resize_image(image, resize_to_pixels=MAX_PIXELS):
image_width, image_height = image.size
if (resize_to_pixels is not None) and ((image_width * image_height) != resize_to_pixels):
resize_ratio = (resize_to_pixels / (image_width * image_height)) ** 0.5
image_width_resized, image_height_resized = int(image_width * resize_ratio), int(image_height * resize_ratio)
image = image.resize((image_width_resized, image_height_resized))
return image
@torch.inference_mode()
def draw_point(image: Image.Image, point: list, radius=8, color=(255, 0, 0, 128)):
overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
overlay_draw = ImageDraw.Draw(overlay)
x, y = point
overlay_draw.ellipse(
[(x - radius, y - radius), (x + radius, y + radius)],
outline=color,
width=5
)
image = image.convert('RGBA')
combined = Image.alpha_composite(image, overlay)
combined = combined.convert('RGB')
return combined
@torch.inference_mode()
def get_attn_map(image, attn_scores, n_width, n_height):
w, h = image.size
scores = np.array(attn_scores[0]).reshape(n_height, n_width)
scores_norm = (scores - scores.min()) / (scores.max() - scores.min())
score_map = Image.fromarray((scores_norm * 255).astype(np.uint8)).resize((w, h), resample=Image.NEAREST)
colormap = plt.get_cmap('jet')
colored_score_map = colormap(np.array(score_map) / 255.0)
colored_score_map = (colored_score_map[:, :, :3] * 255).astype(np.uint8)
colored_overlay = Image.fromarray(colored_score_map)
blended = Image.blend(image, colored_overlay, alpha=0.3)
return blended
# 加载模型
if torch.cuda.is_available():
model_name_or_path = "microsoft/GUI-Actor-7B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cuda:0",
attn_implementation="flash_attention_2"
).eval()
else:
model_name_or_path = "microsoft/GUI-Actor-3B-Qwen2.5-VL"
data_processor = AutoProcessor.from_pretrained(model_name_or_path)
tokenizer = data_processor.tokenizer
model = Qwen2_5_VLForConditionalGenerationWithPointer.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
device_map="cpu"
).eval()
title = "GUI-Actor"
header = """
🎯 GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents
Qianhui Wu*, Kanzhi Cheng*, Rui Yang*, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu, Baolin Peng, Bo Qiao, Reuben Tan, Si Qin, Lars Liden
Qingwei Lin, Huan Zhang, Tong Zhang, Jianbing Zhang, Dongmei Zhang, Jianfeng Gao
"""
theme = "soft"
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;}
#anno-img .mask.active {opacity: 0.7}"""
@torch.inference_mode()
def process(image, instruction):
# 调整图像大小
w, h = image.size
if w * h > MAX_PIXELS:
image = resize_image(image)
conversation = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a GUI agent. Given a screenshot of the current GUI and a human instruction, your task is to locate the screen element that corresponds to the instruction. You should output a PyAutoGUI action that performs a click on the correct position. To indicate the click location, we will use some special tokens, which is used to refer to a visual patch later. For example, you can output: pyautogui.click().",
}
]
},
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{
"type": "text",
"text": instruction,
},
],
},
]
try:
pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3)
except Exception as e:
print(e)
return image, f"Error: {e}", None
px, py = pred["topk_points"][0]
output_coord = f"({px:.4f}, {py:.4f})"
img_with_point = draw_point(image, (px * w, py * h))
n_width, n_height = pred["n_width"], pred["n_height"]
attn_scores = pred["attn_scores"]
att_map = get_attn_map(image, attn_scores, n_width, n_height)
return img_with_point, output_coord, att_map
def main(): # 新增:主函数,使用argparse解析参数
parser = argparse.ArgumentParser(description="GUI-Actor 服务")
parser.add_argument("--port", type=int, default=9876, help="服务端口(默认:9876)")
parser.add_argument("--host", default="localhost", help="服务主机(默认:localhost)")
args = parser.parse_args()
# 创建Gradio界面
with gr.Blocks(title=title, css=css) as demo:
gr.Markdown(header)
with gr.Row():
with gr.Column():
input_image = gr.Image(
type='pil', label='Upload image')
input_instruction = gr.Textbox(label='Instruction', placeholder='Text your (low-level) instruction here')
submit_button = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_with_point = gr.Image(type='pil', label='Image with Point (red circle)')
with gr.Accordion('Detailed prediction'):
pred_xy = gr.Textbox(label='Predicted Coordinates', placeholder='(x, y)')
att_map = gr.Image(type='pil', label='Attention Map')
submit_button.click(
fn=process,
inputs=[
input_image,
input_instruction
],
outputs=[image_with_point, pred_xy, att_map]
)
# 启动服务(使用解析的参数)
print(f"🚀 GUI-Actor 服务启动中...")
print(f"🌐 访问地址: http://{args.host}:{args.port}")
demo.queue().launch(
server_name=args.host,
server_port=args.port,
share=True
)
if __name__ == "__main__": # 新增:程序入口
main()