Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,16 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
-
os.environ["UNSLOTH_DEVICE"] = "cuda"
|
| 4 |
-
from unsloth import FastLanguageModel
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
| 6 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
|
|
|
| 7 |
# -------------------- Load Model --------------------
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
token=HF_TOKEN
|
| 15 |
)
|
| 16 |
|
|
@@ -49,10 +138,10 @@ def generate_reply(conversation):
|
|
| 49 |
# -------------------- Gradio Functions --------------------
|
| 50 |
def start_chat(persona):
|
| 51 |
conversation = [
|
| 52 |
-
|
| 53 |
ONLY respond based on persona and user input.
|
| 54 |
\nPersona: {persona}"""},
|
| 55 |
-
]
|
| 56 |
return conversation, [(None, "How can I help you?")]
|
| 57 |
|
| 58 |
def chat(user_message, history, conversation):
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import os
|
| 3 |
+
# os.environ["UNSLOTH_DEVICE"] = "cuda"
|
| 4 |
+
# from unsloth import FastLanguageModel
|
| 5 |
+
# import torch
|
| 6 |
+
# HF_TOKEN = os.environ["HF_TOKEN"]
|
| 7 |
+
# # -------------------- Load Model --------------------
|
| 8 |
+
# model, tokenizer = FastLanguageModel.from_pretrained(
|
| 9 |
+
# model_name="ak0601/gpt-oss-20b-persona-chat", # your trained model
|
| 10 |
+
# max_seq_length=1024,
|
| 11 |
+
# dtype=None,
|
| 12 |
+
# load_in_4bit=True,
|
| 13 |
+
# device_map="auto",
|
| 14 |
+
# token=HF_TOKEN
|
| 15 |
+
# )
|
| 16 |
+
|
| 17 |
+
# # -------------------- Conversation Formatter --------------------
|
| 18 |
+
# def format_conversation(conversation):
|
| 19 |
+
# text = ""
|
| 20 |
+
# for turn in conversation:
|
| 21 |
+
# if turn["role"] == "system":
|
| 22 |
+
# text += f"[SYSTEM] {turn['content']}\n"
|
| 23 |
+
# elif turn["role"] == "user":
|
| 24 |
+
# text += f"[USER] {turn['content']}\n"
|
| 25 |
+
# elif turn["role"] == "assistant":
|
| 26 |
+
# text += f"[ASSISTANT] {turn['content']}\n"
|
| 27 |
+
# text += "[ASSISTANT]"
|
| 28 |
+
# return text
|
| 29 |
+
|
| 30 |
+
# def generate_reply(conversation):
|
| 31 |
+
# inputs = tokenizer(
|
| 32 |
+
# format_conversation(conversation),
|
| 33 |
+
# return_tensors="pt"
|
| 34 |
+
# ).to(model.device)
|
| 35 |
+
|
| 36 |
+
# output_ids = model.generate(
|
| 37 |
+
# **inputs,
|
| 38 |
+
# max_new_tokens=256,
|
| 39 |
+
# temperature=0.7,
|
| 40 |
+
# top_p=0.9,
|
| 41 |
+
# repetition_penalty=1.1,
|
| 42 |
+
# eos_token_id=tokenizer.eos_token_id,
|
| 43 |
+
# )
|
| 44 |
+
|
| 45 |
+
# response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 46 |
+
# response = response.split("[ASSISTANT]")[-1].strip()
|
| 47 |
+
# return response
|
| 48 |
+
|
| 49 |
+
# # -------------------- Gradio Functions --------------------
|
| 50 |
+
# def start_chat(persona):
|
| 51 |
+
# conversation = [
|
| 52 |
+
# {"role": "system", "content": f"""You are a digital twin.
|
| 53 |
+
# ONLY respond based on persona and user input.
|
| 54 |
+
# \nPersona: {persona}"""},
|
| 55 |
+
# ]
|
| 56 |
+
# return conversation, [(None, "How can I help you?")]
|
| 57 |
+
|
| 58 |
+
# def chat(user_message, history, conversation):
|
| 59 |
+
# conversation.append({"role": "user", "content": user_message})
|
| 60 |
+
# reply = generate_reply(conversation)
|
| 61 |
+
# conversation.append({"role": "assistant", "content": reply})
|
| 62 |
+
# history.append((user_message, reply))
|
| 63 |
+
# return history, conversation
|
| 64 |
+
|
| 65 |
+
# # -------------------- Gradio UI --------------------
|
| 66 |
+
# with gr.Blocks() as demo:
|
| 67 |
+
# gr.Markdown("## 🤖 Digital Twin Chat")
|
| 68 |
+
|
| 69 |
+
# persona_box = gr.Textbox(label="Enter your persona",
|
| 70 |
+
# value="I am male. I am unsociable. I have a weakness for sweets. I am a jack of all, master of none.")
|
| 71 |
+
# start_btn = gr.Button("Start Chat")
|
| 72 |
+
|
| 73 |
+
# chatbot = gr.Chatbot()
|
| 74 |
+
# msg = gr.Textbox(label="Your message")
|
| 75 |
+
|
| 76 |
+
# state_conversation = gr.State([])
|
| 77 |
+
# state_history = gr.State([])
|
| 78 |
+
|
| 79 |
+
# start_btn.click(start_chat, inputs=persona_box, outputs=[state_conversation, chatbot])
|
| 80 |
+
# msg.submit(chat, inputs=[msg, chatbot, state_conversation], outputs=[chatbot, state_conversation])
|
| 81 |
+
|
| 82 |
+
# demo.launch()
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 87 |
import torch
|
| 88 |
+
import os
|
| 89 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 90 |
+
|
| 91 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 92 |
+
|
| 93 |
# -------------------- Load Model --------------------
|
| 94 |
+
model_name = "ak0601/gpt-oss-20b-persona-chat"
|
| 95 |
+
|
| 96 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN)
|
| 97 |
+
|
| 98 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 99 |
+
model_name,
|
| 100 |
+
device_map="auto", # automatically places model on GPU
|
| 101 |
+
torch_dtype=torch.float16, # efficient for H200
|
| 102 |
+
load_in_4bit=True, # quantization if available
|
| 103 |
token=HF_TOKEN
|
| 104 |
)
|
| 105 |
|
|
|
|
| 138 |
# -------------------- Gradio Functions --------------------
|
| 139 |
def start_chat(persona):
|
| 140 |
conversation = [
|
| 141 |
+
{"role": "system", "content": f"""You are a digital twin.
|
| 142 |
ONLY respond based on persona and user input.
|
| 143 |
\nPersona: {persona}"""},
|
| 144 |
+
]
|
| 145 |
return conversation, [(None, "How can I help you?")]
|
| 146 |
|
| 147 |
def chat(user_message, history, conversation):
|