File size: 7,152 Bytes
1df4c13
 
65e4811
 
1df4c13
 
 
7dd3ffd
65e4811
7dd3ffd
1df4c13
 
c797bf2
 
bf30e64
 
ff0c247
c564b64
 
be0239b
c564b64
 
65e4811
 
7dd3ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
65e4811
1df4c13
 
 
 
65e4811
 
1df4c13
7dd3ffd
be0239b
 
 
1df4c13
be0239b
 
 
 
 
 
 
1df4c13
be0239b
7dd3ffd
1df4c13
 
c797bf2
 
 
 
 
1df4c13
 
be0239b
1df4c13
be0239b
7dd3ffd
 
 
65e4811
 
1df4c13
7dd3ffd
be0239b
 
 
 
 
 
bf50e78
 
be0239b
bf50e78
 
 
 
 
be0239b
bf50e78
 
 
1df4c13
6cf1214
 
 
 
 
 
 
1df4c13
7dd3ffd
 
1df4c13
 
be0239b
1df4c13
 
be0239b
 
 
 
 
7dd3ffd
be0239b
 
 
 
 
99baaf6
1b91e31
7dd3ffd
 
65e4811
 
1df4c13
 
c2e1378
 
 
 
 
 
 
 
1df4c13
 
 
 
c2e1378
 
 
 
 
 
 
 
1df4c13
 
 
7dd3ffd
be0239b
 
 
 
 
 
1df4c13
 
be0239b
1df4c13
 
 
 
 
be0239b
1df4c13
 
 
 
 
 
be0239b
1df4c13
 
be0239b
1df4c13
be0239b
091340b
be0239b
 
 
 
 
 
1df4c13
7dd3ffd
 
 
b20457b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import sys

import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import re

from config.constants import COLUMN_MAPPINGS, COLUMN_ORDER, TYPE_EMOJI, DISCARDED_MODELS


def model_hyperlink(link, model_name, release, thinking=False):
    ret = f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
    new_badge = f' <span class="badge new-badge">new</span>'
    reasoning_badge = f' <span class="badge reasoning-badge">reasoning</span>'

    if release == "V3":
        # show new badge only to the latest releases
        return ret + reasoning_badge + new_badge if thinking == "Reasoning" else ret + new_badge
    else:
        return ret + reasoning_badge if thinking == "Reasoning" else ret


def extract_name_from_link(html: str) -> str:
    """
    Extracts the model name from the HTML generated by model_hyperlink()
    """
    if not isinstance(html, str):
        return html

    match = re.search(r'<a[^>]*>(.*?)</a>', html)
    if match:
        return match.group(1).strip()

    return re.sub(r'<[^>]+>', '', html).strip()


def handle_special_cases(benchmark, metric):
    if metric == "Exact Matching (EM)":
        benchmark = "RTL-Repo"
    elif benchmark == "RTL-Repo":
        metric = "Exact Matching (EM)"
    return benchmark, metric


def filter_RTLRepo(subset: pd.DataFrame, name=str) -> pd.DataFrame:
    if subset.empty:
        return pd.DataFrame(columns=["Type", "Model", "Params", "Exact Matching (EM)"])

    subset = subset.drop(subset[subset.Score < 0.0].index)

    # Check again if empty after filtering
    if subset.empty:
        return pd.DataFrame(columns=["Type", "Model", "Params", "Exact Matching (EM)"])

    details = subset[["Model", "Model URL", "Model Type", "Params", "Release", "Thinking"]].drop_duplicates(
        "Model"
    )
    filtered_df = subset[["Model", "Score"]].rename(columns={"Score": "Exact Matching (EM)"})

    filtered_df = pd.merge(filtered_df, details, on="Model", how="left")
    filtered_df["Model"] = filtered_df.apply(
        lambda row: model_hyperlink(
            row["Model URL"],
            row["Model"],
            row["Release"],
        ),
        axis=1,
    )
    filtered_df["Type"] = filtered_df["Model Type"].map(lambda x: TYPE_EMOJI.get(x, ""))
    filtered_df = filtered_df[["Type", "Model", "Params", "Exact Matching (EM)"]]
    filtered_df = filtered_df.sort_values(by="Exact Matching (EM)", ascending=False).reset_index(drop=True)

    if name == "Other Models":
        filtered_df["Date Discarded"] = filtered_df["Model"].apply(lambda x: DISCARDED_MODELS.get(extract_name_from_link(x), "N/A"))
    return filtered_df


def filter_bench(subset: pd.DataFrame, df_agg=None, agg_column=None, name=str) -> pd.DataFrame:
    if subset.empty:
        return pd.DataFrame(columns=COLUMN_ORDER)

    details = subset[["Model", "Model URL", "Model Type", "Params", "Release", "Thinking"]].drop_duplicates(
        "Model"
    )
    if "RTLLM" in subset["Benchmark"].unique():
        pivot_df = (
            subset.pivot_table(index="Model", columns="Metric", values="Score", aggfunc=custom_agg_s2r)
            .reset_index()
            .round(2)
        )
    else:
        pivot_df = (
            subset.pivot_table(index="Model", columns="Metric", values="Score", aggfunc=custom_agg_cc)
            .reset_index()
            .round(2)
        )

    # if df_agg is not None and agg_column is not None and agg_column in df_agg.columns:
    #     agg_data = df_agg[["Model", agg_column]].rename(
    #         columns={agg_column: "Aggregated ⬆️"}
    #     )
    #     pivot_df = pd.merge(pivot_df, agg_data, on="Model", how="left")
    # else:  # fallback
    #     pivot_df["Aggregated ⬆️"] = pivot_df.mean(axis=1, numeric_only=True).round(2)

    

    pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
    pivot_df["Model"] = pivot_df.apply(
        lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"], row["Thinking"]),
        axis=1,
    )
    pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: TYPE_EMOJI.get(x, ""))

    if all(col in pivot_df.columns for col in ["Power", "Performance", "Area"]):
        pivot_df["Post-Synthesis (PSQ)"] = pivot_df[["Power", "Performance", "Area"]].mean(axis=1).round(2)

    
    pivot_df.rename(columns=COLUMN_MAPPINGS, inplace=True)
    pivot_df = pivot_df[[col for col in COLUMN_ORDER if col in pivot_df.columns]]

    if "Functionality" in pivot_df.columns:
        pivot_df = pivot_df.sort_values(by="Functionality", ascending=False).reset_index(drop=True)

    if name == "Other Models":
        pivot_df["Date Discarded"] = pivot_df["Model"].apply(lambda x: DISCARDED_MODELS.get(extract_name_from_link(x), "N/A"))

    return pivot_df


def custom_agg_s2r(vals):
    if len(vals) == 2:
        s2r_val = vals.iloc[0]
        rtllm_val = vals.iloc[1]
        w1 = 155
        w2 = 47
        result = (w1 * s2r_val + w2 * rtllm_val) / (w1 + w2)
    else:
        result = vals.iloc[0]
    return round(result, 2)


def custom_agg_cc(vals):
    if len(vals) == 2:
        veval_val = vals.iloc[0]
        vgen_val = vals.iloc[1]
        w1 = 155
        w2 = 17
        result = (w1 * veval_val + w2 * vgen_val) / (w1 + w2)
    else:
        result = vals.iloc[0]
    return round(result, 2)


def filter_bench_all(subset: pd.DataFrame, df_agg=None, agg_column=None, name=str) -> pd.DataFrame:
    if subset.empty:
        return pd.DataFrame(columns=COLUMN_ORDER)

    details = subset[["Model", "Model URL", "Model Type", "Params", "Release", "Thinking"]].drop_duplicates(
        "Model"
    )
    if "RTLLM" in subset["Benchmark"].unique():
        pivot_df = (
            subset.pivot_table(index="Model", columns="Metric", values="Score", aggfunc=custom_agg_s2r)
            .reset_index()
            .round(2)
        )
    else:
        pivot_df = (
            subset.pivot_table(index="Model", columns="Metric", values="Score", aggfunc=custom_agg_cc)
            .reset_index()
            .round(2)
        )

    pivot_df = pd.merge(pivot_df, details, on="Model", how="left")
    pivot_df["Model"] = pivot_df.apply(
        lambda row: model_hyperlink(row["Model URL"], row["Model"], row["Release"], row["Thinking"]),
        axis=1,
    )
    pivot_df["Type"] = pivot_df["Model Type"].map(lambda x: TYPE_EMOJI.get(x, ""))

    if all(col in pivot_df.columns for col in ["Power", "Performance", "Area"]):
        pivot_df["Post-Synthesis (PSQ)"] = pivot_df[["Power", "Performance", "Area"]].mean(axis=1).round(2)

    pivot_df.rename(columns=COLUMN_MAPPINGS, inplace=True)
    pivot_df = pivot_df[[col for col in COLUMN_ORDER if col in pivot_df.columns]]

    if "Functionality" in pivot_df.columns:
        pivot_df = pivot_df.sort_values(by="Functionality", ascending=False).reset_index(drop=True)

    if name == "Other Models":
        pivot_df["Date Discarded"] = pivot_df["Model"].apply(lambda x: DISCARDED_MODELS.get(extract_name_from_link(x), "N/A"))

    return pivot_df