Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -14,13 +14,31 @@ from src.bin.PROBE import run_probe
|
|
| 14 |
|
| 15 |
global data_component, filter_component
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
def get_baseline_df(selected_methods, selected_metrics):
|
| 18 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 19 |
present_columns = ["method_name"] + selected_metrics
|
| 20 |
df = df[df['method_name'].isin(selected_methods)][present_columns]
|
| 21 |
return df
|
| 22 |
|
| 23 |
-
def
|
| 24 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 25 |
filtered_df = df[df['method_name'].isin(methods_selected)]
|
| 26 |
|
|
@@ -73,7 +91,7 @@ with block:
|
|
| 73 |
|
| 74 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 75 |
# table jmmmu bench
|
| 76 |
-
with gr.TabItem("🏅 PROBE
|
| 77 |
|
| 78 |
method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
|
| 79 |
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
|
|
@@ -116,23 +134,45 @@ with block:
|
|
| 116 |
outputs=data_component
|
| 117 |
)
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
plot_button.click(create_plot, inputs=[method_selector, x_metric_selector, y_metric_selector], outputs=output_plot)
|
| 134 |
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
| 137 |
with gr.Row():
|
| 138 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
|
|
|
| 14 |
|
| 15 |
global data_component, filter_component
|
| 16 |
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric):
|
| 20 |
+
if benchmark_type == 'Flexible':
|
| 21 |
+
# Use general visualizer logic
|
| 22 |
+
return general_visualizer_plot(methods_selected, x_metric=x_metric, y_metric=y_metric)
|
| 23 |
+
elif benchmark_type == 'Benchmark 1':
|
| 24 |
+
return benchmark_1_plot(x_metric, y_metric)
|
| 25 |
+
elif benchmark_type == 'Benchmark 2':
|
| 26 |
+
return benchmark_2_plot(x_metric, y_metric)
|
| 27 |
+
elif benchmark_type == 'Benchmark 3':
|
| 28 |
+
return benchmark_3_plot(x_metric, y_metric)
|
| 29 |
+
elif benchmark_type == 'Benchmark 4':
|
| 30 |
+
return benchmark_4_plot(x_metric, y_metric)
|
| 31 |
+
else:
|
| 32 |
+
return "Invalid benchmark type selected."
|
| 33 |
+
|
| 34 |
+
|
| 35 |
def get_baseline_df(selected_methods, selected_metrics):
|
| 36 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 37 |
present_columns = ["method_name"] + selected_metrics
|
| 38 |
df = df[df['method_name'].isin(selected_methods)][present_columns]
|
| 39 |
return df
|
| 40 |
|
| 41 |
+
def general_visualizer(methods_selected, x_metric, y_metric):
|
| 42 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 43 |
filtered_df = df[df['method_name'].isin(methods_selected)]
|
| 44 |
|
|
|
|
| 91 |
|
| 92 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 93 |
# table jmmmu bench
|
| 94 |
+
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
| 95 |
|
| 96 |
method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
|
| 97 |
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
|
|
|
|
| 134 |
outputs=data_component
|
| 135 |
)
|
| 136 |
|
| 137 |
+
with gr.TabItem("Visualizer"):
|
| 138 |
+
|
| 139 |
+
# Dropdown for benchmark type
|
| 140 |
+
benchmark_types = TASK_INFO + ['flexible']
|
| 141 |
+
benchmark_type_selector = gr.Dropdown(choices=benchmark_types, label="Select Benchmark Type for Visualization", value="flexible")
|
| 142 |
+
|
| 143 |
+
# Dynamic metric selectors (will be updated based on benchmark type)
|
| 144 |
+
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric")
|
| 145 |
+
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric")
|
| 146 |
+
method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
|
| 147 |
+
|
| 148 |
+
# Button to draw the plot for the selected benchmark
|
| 149 |
+
plot_button = gr.Button("Plot Visualization")
|
| 150 |
+
plot_output = gr.Image(label="Plot")
|
| 151 |
|
| 152 |
+
# Update metric selectors when benchmark type is chosen
|
| 153 |
+
def update_metric_choices(benchmark_type):
|
| 154 |
+
if benchmark_type == 'flexible':
|
| 155 |
+
# Show all metrics for the flexible visualizer
|
| 156 |
+
metric_names = df.columns.tolist()
|
| 157 |
+
return gr.update(choices=metric_names, value=metric_names[0]), gr.update(choices=metric_names, value=metric_names[1])
|
| 158 |
+
elif benchmark_type in benchmark_specific_metrics:
|
| 159 |
+
metrics = benchmark_specific_metrics[benchmark_type]
|
| 160 |
+
return gr.update(choices=metrics, value=metrics[0]), gr.update(choices=metrics[1])
|
| 161 |
+
return gr.update(choices=[]), gr.update(choices=[])
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
benchmark_type_selector.change(
|
| 164 |
+
update_metric_choices,
|
| 165 |
+
inputs=[benchmark_type_selector],
|
| 166 |
+
outputs=[x_metric_selector, y_metric_selector]
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Generate the plot based on user input
|
| 170 |
+
plot_button.click(
|
| 171 |
+
benchmark_plot,
|
| 172 |
+
inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector],
|
| 173 |
+
outputs=plot_output
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
| 177 |
with gr.Row():
|
| 178 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|