Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,7 +21,7 @@ from src.vis_utils import *
|
|
| 21 |
from src.bin.PROBE import run_probe
|
| 22 |
|
| 23 |
# ------------------------------------------------------------------
|
| 24 |
-
# Helper functions
|
| 25 |
# ------------------------------------------------------------------
|
| 26 |
|
| 27 |
def add_new_eval(
|
|
@@ -40,7 +40,6 @@ def add_new_eval(
|
|
| 40 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
| 41 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
| 42 |
return -1
|
| 43 |
-
|
| 44 |
if 'affinity' in benchmark_types and skempi_file is None:
|
| 45 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
| 46 |
return -1
|
|
@@ -77,20 +76,17 @@ def refresh_data():
|
|
| 77 |
"""Re‑start the space and pull fresh leaderboard CSVs from the HF Hub."""
|
| 78 |
api.restart_space(repo_id=repo_id)
|
| 79 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
| 80 |
-
|
| 81 |
for benchmark_type in benchmark_types:
|
| 82 |
path = f"/tmp/{benchmark_type}_results.csv"
|
| 83 |
if os.path.exists(path):
|
| 84 |
os.remove(path)
|
| 85 |
-
|
| 86 |
benchmark_types.remove("leaderboard")
|
| 87 |
download_from_hub(benchmark_types)
|
| 88 |
|
| 89 |
|
| 90 |
-
# ------- Leaderboard helpers
|
| 91 |
|
| 92 |
def update_metrics(selected_benchmarks):
|
| 93 |
-
"""Populate metric selector according to chosen benchmark types."""
|
| 94 |
updated_metrics = set()
|
| 95 |
for benchmark in selected_benchmarks:
|
| 96 |
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
|
|
@@ -98,50 +94,33 @@ def update_metrics(selected_benchmarks):
|
|
| 98 |
|
| 99 |
|
| 100 |
def update_leaderboard(selected_methods, selected_metrics):
|
| 101 |
-
|
| 102 |
-
return updated_df
|
| 103 |
|
| 104 |
-
# ------- Visualisation helpers
|
| 105 |
|
| 106 |
def get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric):
|
| 107 |
-
"""Return a short natural‑language explanation for the produced plot."""
|
| 108 |
if benchmark_type == "similarity":
|
| 109 |
return (
|
| 110 |
-
f"
|
| 111 |
-
|
| 112 |
-
"performance on both metrics."
|
| 113 |
)
|
| 114 |
-
|
| 115 |
return (
|
| 116 |
-
f"
|
| 117 |
-
|
| 118 |
-
"Darker squares correspond to stronger performance; hierarchical clustering "
|
| 119 |
-
"groups similar models and tasks together."
|
| 120 |
)
|
| 121 |
-
|
| 122 |
return (
|
| 123 |
-
f"
|
| 124 |
-
f"**{dataset}** dataset. Higher median MCC values indicate better family‑"
|
| 125 |
-
"classification accuracy."
|
| 126 |
)
|
| 127 |
-
|
| 128 |
return (
|
| 129 |
-
f"
|
| 130 |
-
"model when predicting binding affinity changes. Higher values are better."
|
| 131 |
)
|
| 132 |
return ""
|
| 133 |
|
| 134 |
|
| 135 |
-
def generate_plot_and_explanation(
|
| 136 |
-
benchmark_type,
|
| 137 |
-
methods_selected,
|
| 138 |
-
x_metric,
|
| 139 |
-
y_metric,
|
| 140 |
-
aspect,
|
| 141 |
-
dataset,
|
| 142 |
-
single_metric,
|
| 143 |
-
):
|
| 144 |
-
"""Callback wrapper that returns both the image path and a textual explanation."""
|
| 145 |
plot_path = benchmark_plot(
|
| 146 |
benchmark_type,
|
| 147 |
methods_selected,
|
|
@@ -154,10 +133,34 @@ def generate_plot_and_explanation(
|
|
| 154 |
explanation = get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric)
|
| 155 |
return plot_path, explanation
|
| 156 |
|
| 157 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
# UI definition
|
| 159 |
-
#
|
| 160 |
-
block = gr.Blocks()
|
| 161 |
|
| 162 |
with block:
|
| 163 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
|
@@ -167,23 +170,28 @@ with block:
|
|
| 167 |
# 1️⃣ Leaderboard tab
|
| 168 |
# ------------------------------------------------------------------
|
| 169 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
|
|
|
| 172 |
method_names = leaderboard['Method'].unique().tolist()
|
| 173 |
-
metric_names = leaderboard.columns.tolist()
|
| 174 |
-
metric_names.remove('Method') # remove non‑metric column
|
| 175 |
|
| 176 |
benchmark_metric_mapping = {
|
| 177 |
"similarity": [m for m in metric_names if m.startswith('sim_')],
|
| 178 |
-
"function":
|
| 179 |
-
"family":
|
| 180 |
-
"affinity":
|
| 181 |
}
|
| 182 |
|
| 183 |
-
# selectors -----------------------------------------------------
|
| 184 |
leaderboard_method_selector = gr.CheckboxGroup(
|
| 185 |
choices=method_names,
|
| 186 |
-
label="Select Methods
|
| 187 |
value=method_names,
|
| 188 |
interactive=True,
|
| 189 |
)
|
|
@@ -197,15 +205,14 @@ with block:
|
|
| 197 |
|
| 198 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
| 199 |
choices=metric_names,
|
| 200 |
-
label="Select Metrics
|
| 201 |
value=None,
|
| 202 |
interactive=True,
|
| 203 |
)
|
| 204 |
|
| 205 |
-
# leaderboard table --------------------------------------------
|
| 206 |
baseline_value = get_baseline_df(method_names, metric_names)
|
| 207 |
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
|
| 208 |
-
baseline_header
|
| 209 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
| 210 |
|
| 211 |
with gr.Row(show_progress=True, variant='panel'):
|
|
@@ -215,22 +222,21 @@ with block:
|
|
| 215 |
type="pandas",
|
| 216 |
datatype=baseline_datatype,
|
| 217 |
interactive=False,
|
| 218 |
-
|
|
|
|
| 219 |
)
|
| 220 |
|
| 221 |
-
# callbacks
|
| 222 |
leaderboard_method_selector.change(
|
| 223 |
get_baseline_df,
|
| 224 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
| 225 |
outputs=data_component,
|
| 226 |
)
|
| 227 |
-
|
| 228 |
benchmark_type_selector_lb.change(
|
| 229 |
lambda selected: update_metrics(selected),
|
| 230 |
inputs=[benchmark_type_selector_lb],
|
| 231 |
outputs=leaderboard_metric_selector,
|
| 232 |
)
|
| 233 |
-
|
| 234 |
leaderboard_metric_selector.change(
|
| 235 |
get_baseline_df,
|
| 236 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
|
@@ -238,58 +244,36 @@ with block:
|
|
| 238 |
)
|
| 239 |
|
| 240 |
# ------------------------------------------------------------------
|
| 241 |
-
# 2️⃣
|
| 242 |
# ------------------------------------------------------------------
|
| 243 |
-
with gr.TabItem("📊
|
| 244 |
-
# Intro / instructions
|
| 245 |
gr.Markdown(
|
| 246 |
-
"""
|
| 247 |
-
|
| 248 |
-
Select a benchmark type first; context‑specific options will appear automatically.
|
| 249 |
-
Once your parameters are set, click **Plot** to generate the figure.
|
| 250 |
-
|
| 251 |
-
**How to read the plots**
|
| 252 |
-
* **Similarity (scatter)** – Each point is a model. Points nearer the top‑right perform well on both chosen similarity metrics.
|
| 253 |
-
* **Function prediction (heat‑map)** – Darker squares denote better scores. Rows/columns are clustered to reveal shared structure.
|
| 254 |
-
* **Family / Affinity (boxplots)** – Boxes summarise distribution across folds/targets. Higher medians indicate stronger performance.
|
| 255 |
-
""",
|
| 256 |
elem_classes="markdown-text",
|
| 257 |
)
|
| 258 |
-
|
| 259 |
-
# ------------------------------------------------------------------
|
| 260 |
-
# selectors specific to visualisation
|
| 261 |
-
# ------------------------------------------------------------------
|
| 262 |
vis_benchmark_type_selector = gr.Dropdown(
|
| 263 |
choices=list(benchmark_specific_metrics.keys()),
|
| 264 |
-
label="
|
| 265 |
value=None,
|
| 266 |
)
|
| 267 |
-
|
| 268 |
with gr.Row():
|
| 269 |
-
vis_x_metric_selector = gr.Dropdown(choices=[], label="
|
| 270 |
-
vis_y_metric_selector = gr.Dropdown(choices=[], label="
|
| 271 |
-
vis_aspect_type_selector = gr.Dropdown(choices=[], label="
|
| 272 |
-
vis_dataset_selector = gr.Dropdown(choices=[], label="
|
| 273 |
-
vis_single_metric_selector = gr.Dropdown(choices=[], label="
|
| 274 |
-
|
| 275 |
vis_method_selector = gr.CheckboxGroup(
|
| 276 |
choices=method_names,
|
| 277 |
-
label="
|
| 278 |
-
interactive=True,
|
| 279 |
value=method_names,
|
|
|
|
| 280 |
)
|
| 281 |
-
|
| 282 |
plot_button = gr.Button("Plot")
|
| 283 |
-
|
| 284 |
with gr.Row(show_progress=True, variant='panel'):
|
| 285 |
plot_output = gr.Image(label="Plot")
|
| 286 |
-
|
| 287 |
-
# textual explanation below the image
|
| 288 |
plot_explanation = gr.Markdown(visible=False)
|
| 289 |
-
|
| 290 |
-
# ------------------------------------------------------------------
|
| 291 |
-
# callbacks for visualisation tab
|
| 292 |
-
# ------------------------------------------------------------------
|
| 293 |
vis_benchmark_type_selector.change(
|
| 294 |
update_metric_choices,
|
| 295 |
inputs=[vis_benchmark_type_selector],
|
|
@@ -301,7 +285,6 @@ with block:
|
|
| 301 |
vis_single_metric_selector,
|
| 302 |
],
|
| 303 |
)
|
| 304 |
-
|
| 305 |
plot_button.click(
|
| 306 |
generate_plot_and_explanation,
|
| 307 |
inputs=[
|
|
@@ -335,53 +318,21 @@ with block:
|
|
| 335 |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4):
|
| 336 |
with gr.Row():
|
| 337 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 338 |
-
|
| 339 |
with gr.Row():
|
| 340 |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
|
| 341 |
-
|
| 342 |
with gr.Row():
|
| 343 |
with gr.Column():
|
| 344 |
model_name_textbox = gr.Textbox(label="Method name")
|
| 345 |
revision_name_textbox = gr.Textbox(label="Revision Method Name")
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
)
|
| 352 |
-
similarity_tasks = gr.CheckboxGroup(
|
| 353 |
-
choices=similarity_tasks_options,
|
| 354 |
-
label="Similarity Tasks",
|
| 355 |
-
interactive=True,
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
function_prediction_aspect = gr.Radio(
|
| 359 |
-
choices=function_prediction_aspect_options,
|
| 360 |
-
label="Function Prediction Aspects",
|
| 361 |
-
interactive=True,
|
| 362 |
-
)
|
| 363 |
-
|
| 364 |
-
family_prediction_dataset = gr.CheckboxGroup(
|
| 365 |
-
choices=family_prediction_dataset_options,
|
| 366 |
-
label="Family Prediction Datasets",
|
| 367 |
-
interactive=True,
|
| 368 |
-
)
|
| 369 |
-
|
| 370 |
-
function_dataset = gr.Textbox(
|
| 371 |
-
label="Function Prediction Datasets",
|
| 372 |
-
visible=False,
|
| 373 |
-
value="All_Data_Sets",
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
save_checkbox = gr.Checkbox(
|
| 377 |
-
label="Save results for leaderboard and visualization",
|
| 378 |
-
value=True,
|
| 379 |
-
)
|
| 380 |
-
|
| 381 |
with gr.Row():
|
| 382 |
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath')
|
| 383 |
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath')
|
| 384 |
-
|
| 385 |
submit_button = gr.Button("Submit Eval")
|
| 386 |
submission_result = gr.Markdown()
|
| 387 |
submit_button.click(
|
|
@@ -400,9 +351,7 @@ with block:
|
|
| 400 |
],
|
| 401 |
)
|
| 402 |
|
| 403 |
-
#
|
| 404 |
-
# global refresh button & citation accordion
|
| 405 |
-
# ----------------------------------------------------------------------
|
| 406 |
with gr.Row():
|
| 407 |
data_run = gr.Button("Refresh")
|
| 408 |
data_run.click(refresh_data, outputs=[data_component])
|
|
@@ -415,5 +364,5 @@ with block:
|
|
| 415 |
show_copy_button=True,
|
| 416 |
)
|
| 417 |
|
| 418 |
-
#
|
| 419 |
block.launch()
|
|
|
|
| 21 |
from src.bin.PROBE import run_probe
|
| 22 |
|
| 23 |
# ------------------------------------------------------------------
|
| 24 |
+
# Helper functions --------------------------------------------------
|
| 25 |
# ------------------------------------------------------------------
|
| 26 |
|
| 27 |
def add_new_eval(
|
|
|
|
| 40 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
| 41 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
| 42 |
return -1
|
|
|
|
| 43 |
if 'affinity' in benchmark_types and skempi_file is None:
|
| 44 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
| 45 |
return -1
|
|
|
|
| 76 |
"""Re‑start the space and pull fresh leaderboard CSVs from the HF Hub."""
|
| 77 |
api.restart_space(repo_id=repo_id)
|
| 78 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
|
|
|
| 79 |
for benchmark_type in benchmark_types:
|
| 80 |
path = f"/tmp/{benchmark_type}_results.csv"
|
| 81 |
if os.path.exists(path):
|
| 82 |
os.remove(path)
|
|
|
|
| 83 |
benchmark_types.remove("leaderboard")
|
| 84 |
download_from_hub(benchmark_types)
|
| 85 |
|
| 86 |
|
| 87 |
+
# ------- Leaderboard helpers -----------------------------------------------
|
| 88 |
|
| 89 |
def update_metrics(selected_benchmarks):
|
|
|
|
| 90 |
updated_metrics = set()
|
| 91 |
for benchmark in selected_benchmarks:
|
| 92 |
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
|
|
|
|
| 94 |
|
| 95 |
|
| 96 |
def update_leaderboard(selected_methods, selected_metrics):
|
| 97 |
+
return get_baseline_df(selected_methods, selected_metrics)
|
|
|
|
| 98 |
|
| 99 |
+
# ------- Visualisation helpers ---------------------------------------------
|
| 100 |
|
| 101 |
def get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric):
|
|
|
|
| 102 |
if benchmark_type == "similarity":
|
| 103 |
return (
|
| 104 |
+
f"Scatter plot compares models on **{x_metric}** (x‑axis) and **{y_metric}** (y‑axis). "
|
| 105 |
+
"Upper‑right points indicate jointly strong performance."
|
|
|
|
| 106 |
)
|
| 107 |
+
if benchmark_type == "function":
|
| 108 |
return (
|
| 109 |
+
f"Heat‑map shows model scores for **{aspect.upper()}** terms with **{single_metric}**. "
|
| 110 |
+
"Darker squares → better predictions."
|
|
|
|
|
|
|
| 111 |
)
|
| 112 |
+
if benchmark_type == "family":
|
| 113 |
return (
|
| 114 |
+
f"Box‑plots summarise cross‑fold MCC on **{dataset}**; higher medians are better."
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
+
if benchmark_type == "affinity":
|
| 117 |
return (
|
| 118 |
+
f"Box‑plots display distribution of **{single_metric}** scores for affinity prediction; higher values are better."
|
|
|
|
| 119 |
)
|
| 120 |
return ""
|
| 121 |
|
| 122 |
|
| 123 |
+
def generate_plot_and_explanation(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
plot_path = benchmark_plot(
|
| 125 |
benchmark_type,
|
| 126 |
methods_selected,
|
|
|
|
| 133 |
explanation = get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric)
|
| 134 |
return plot_path, explanation
|
| 135 |
|
| 136 |
+
# ---------------------------------------------------------------------------
|
| 137 |
+
# Custom CSS for frozen first column and clearer table styles
|
| 138 |
+
# ---------------------------------------------------------------------------
|
| 139 |
+
CUSTOM_CSS = """
|
| 140 |
+
/* freeze first column */
|
| 141 |
+
#leaderboard-table thead th:first-child,
|
| 142 |
+
#leaderboard-table tbody td:first-child {
|
| 143 |
+
position: sticky;
|
| 144 |
+
left: 0;
|
| 145 |
+
background: white;
|
| 146 |
+
z-index: 2;
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
/* striped rows for readability */
|
| 150 |
+
#leaderboard-table tbody tr:nth-child(odd) {
|
| 151 |
+
background: #fafafa;
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
/* centre numeric cells */
|
| 155 |
+
#leaderboard-table td:not(:first-child) {
|
| 156 |
+
text-align: center;
|
| 157 |
+
}
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
# ---------------------------------------------------------------------------
|
| 161 |
# UI definition
|
| 162 |
+
# ---------------------------------------------------------------------------
|
| 163 |
+
block = gr.Blocks(css=CUSTOM_CSS)
|
| 164 |
|
| 165 |
with block:
|
| 166 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
|
|
|
| 170 |
# 1️⃣ Leaderboard tab
|
| 171 |
# ------------------------------------------------------------------
|
| 172 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
| 173 |
+
# small workflow figure at top
|
| 174 |
+
gr.Image(
|
| 175 |
+
value="./src/data/PROBE_workflow_figure.jpg",
|
| 176 |
+
show_label=False,
|
| 177 |
+
height=150,
|
| 178 |
+
container=False,
|
| 179 |
+
)
|
| 180 |
|
| 181 |
+
leaderboard = get_baseline_df(None, None)
|
| 182 |
method_names = leaderboard['Method'].unique().tolist()
|
| 183 |
+
metric_names = leaderboard.columns.tolist(); metric_names.remove('Method')
|
|
|
|
| 184 |
|
| 185 |
benchmark_metric_mapping = {
|
| 186 |
"similarity": [m for m in metric_names if m.startswith('sim_')],
|
| 187 |
+
"function": [m for m in metric_names if m.startswith('func')],
|
| 188 |
+
"family": [m for m in metric_names if m.startswith('fam_')],
|
| 189 |
+
"affinity": [m for m in metric_names if m.startswith('aff_')],
|
| 190 |
}
|
| 191 |
|
|
|
|
| 192 |
leaderboard_method_selector = gr.CheckboxGroup(
|
| 193 |
choices=method_names,
|
| 194 |
+
label="Select Methods",
|
| 195 |
value=method_names,
|
| 196 |
interactive=True,
|
| 197 |
)
|
|
|
|
| 205 |
|
| 206 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
| 207 |
choices=metric_names,
|
| 208 |
+
label="Select Metrics",
|
| 209 |
value=None,
|
| 210 |
interactive=True,
|
| 211 |
)
|
| 212 |
|
|
|
|
| 213 |
baseline_value = get_baseline_df(method_names, metric_names)
|
| 214 |
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
|
| 215 |
+
baseline_header = ["Method"] + metric_names
|
| 216 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
| 217 |
|
| 218 |
with gr.Row(show_progress=True, variant='panel'):
|
|
|
|
| 222 |
type="pandas",
|
| 223 |
datatype=baseline_datatype,
|
| 224 |
interactive=False,
|
| 225 |
+
elem_id="leaderboard-table",
|
| 226 |
+
height=600, # make table longer
|
| 227 |
)
|
| 228 |
|
| 229 |
+
# callbacks
|
| 230 |
leaderboard_method_selector.change(
|
| 231 |
get_baseline_df,
|
| 232 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
| 233 |
outputs=data_component,
|
| 234 |
)
|
|
|
|
| 235 |
benchmark_type_selector_lb.change(
|
| 236 |
lambda selected: update_metrics(selected),
|
| 237 |
inputs=[benchmark_type_selector_lb],
|
| 238 |
outputs=leaderboard_metric_selector,
|
| 239 |
)
|
|
|
|
| 240 |
leaderboard_metric_selector.change(
|
| 241 |
get_baseline_df,
|
| 242 |
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
|
|
|
| 244 |
)
|
| 245 |
|
| 246 |
# ------------------------------------------------------------------
|
| 247 |
+
# 2️⃣ Visualisation tab
|
| 248 |
# ------------------------------------------------------------------
|
| 249 |
+
with gr.TabItem("📊 Visualizations", elem_id="probe-benchmark-tab-visualization", id=2):
|
|
|
|
| 250 |
gr.Markdown(
|
| 251 |
+
"""## **Interactive Visualizations**
|
| 252 |
+
Choose a benchmark type; context‑specific options will appear. Click **Plot** and an explanation will follow the figure.""",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
elem_classes="markdown-text",
|
| 254 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
vis_benchmark_type_selector = gr.Dropdown(
|
| 256 |
choices=list(benchmark_specific_metrics.keys()),
|
| 257 |
+
label="Benchmark Type",
|
| 258 |
value=None,
|
| 259 |
)
|
|
|
|
| 260 |
with gr.Row():
|
| 261 |
+
vis_x_metric_selector = gr.Dropdown(choices=[], label="X‑axis Metric", visible=False)
|
| 262 |
+
vis_y_metric_selector = gr.Dropdown(choices=[], label="Y‑axis Metric", visible=False)
|
| 263 |
+
vis_aspect_type_selector = gr.Dropdown(choices=[], label="Aspect", visible=False)
|
| 264 |
+
vis_dataset_selector = gr.Dropdown(choices=[], label="Dataset", visible=False)
|
| 265 |
+
vis_single_metric_selector = gr.Dropdown(choices=[], label="Metric", visible=False)
|
|
|
|
| 266 |
vis_method_selector = gr.CheckboxGroup(
|
| 267 |
choices=method_names,
|
| 268 |
+
label="Methods",
|
|
|
|
| 269 |
value=method_names,
|
| 270 |
+
interactive=True,
|
| 271 |
)
|
|
|
|
| 272 |
plot_button = gr.Button("Plot")
|
|
|
|
| 273 |
with gr.Row(show_progress=True, variant='panel'):
|
| 274 |
plot_output = gr.Image(label="Plot")
|
|
|
|
|
|
|
| 275 |
plot_explanation = gr.Markdown(visible=False)
|
| 276 |
+
# callbacks
|
|
|
|
|
|
|
|
|
|
| 277 |
vis_benchmark_type_selector.change(
|
| 278 |
update_metric_choices,
|
| 279 |
inputs=[vis_benchmark_type_selector],
|
|
|
|
| 285 |
vis_single_metric_selector,
|
| 286 |
],
|
| 287 |
)
|
|
|
|
| 288 |
plot_button.click(
|
| 289 |
generate_plot_and_explanation,
|
| 290 |
inputs=[
|
|
|
|
| 318 |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4):
|
| 319 |
with gr.Row():
|
| 320 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
|
| 321 |
with gr.Row():
|
| 322 |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
|
|
|
|
| 323 |
with gr.Row():
|
| 324 |
with gr.Column():
|
| 325 |
model_name_textbox = gr.Textbox(label="Method name")
|
| 326 |
revision_name_textbox = gr.Textbox(label="Revision Method Name")
|
| 327 |
+
benchmark_types = gr.CheckboxGroup(choices=TASK_INFO, label="Benchmark Types", interactive=True)
|
| 328 |
+
similarity_tasks = gr.CheckboxGroup(choices=similarity_tasks_options, label="Similarity Tasks", interactive=True)
|
| 329 |
+
function_prediction_aspect = gr.Radio(choices=function_prediction_aspect_options, label="Function Prediction Aspects", interactive=True)
|
| 330 |
+
family_prediction_dataset = gr.CheckboxGroup(choices=family_prediction_dataset_options, label="Family Prediction Datasets", interactive=True)
|
| 331 |
+
function_dataset = gr.Textbox(label="Function Prediction Datasets", visible=False, value="All_Data_Sets")
|
| 332 |
+
save_checkbox = gr.Checkbox(label="Save results for leaderboard and visualization", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
with gr.Row():
|
| 334 |
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath')
|
| 335 |
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath')
|
|
|
|
| 336 |
submit_button = gr.Button("Submit Eval")
|
| 337 |
submission_result = gr.Markdown()
|
| 338 |
submit_button.click(
|
|
|
|
| 351 |
],
|
| 352 |
)
|
| 353 |
|
| 354 |
+
# global refresh + citation ---------------------------------------------
|
|
|
|
|
|
|
| 355 |
with gr.Row():
|
| 356 |
data_run = gr.Button("Refresh")
|
| 357 |
data_run.click(refresh_data, outputs=[data_component])
|
|
|
|
| 364 |
show_copy_button=True,
|
| 365 |
)
|
| 366 |
|
| 367 |
+
# ---------------------------------------------------------------------------
|
| 368 |
block.launch()
|