Spaces:
Sleeping
Sleeping
Update src/saving_utils.py
Browse files- src/saving_utils.py +4 -4
src/saving_utils.py
CHANGED
|
@@ -56,13 +56,13 @@ def save_similarity_output(output_dict, method_name, leaderboard_path="/home/use
|
|
| 56 |
# Calculate averages if all three aspects (MF, BP, CC) are present
|
| 57 |
if len(correlation_values) == 3:
|
| 58 |
averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
|
| 59 |
-
similarity_df.
|
| 60 |
-
leaderboard_df.
|
| 61 |
|
| 62 |
if len(pvalue_values) == 3:
|
| 63 |
averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
|
| 64 |
-
similarity_df.
|
| 65 |
-
leaderboard_df.
|
| 66 |
|
| 67 |
# Save the updated DataFrames back to CSV
|
| 68 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|
|
|
|
| 56 |
# Calculate averages if all three aspects (MF, BP, CC) are present
|
| 57 |
if len(correlation_values) == 3:
|
| 58 |
averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
|
| 59 |
+
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
|
| 60 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
|
| 61 |
|
| 62 |
if len(pvalue_values) == 3:
|
| 63 |
averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
|
| 64 |
+
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 65 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 66 |
|
| 67 |
# Save the updated DataFrames back to CSV
|
| 68 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|