Spaces:
Sleeping
Sleeping
File size: 15,026 Bytes
7ca901a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
"""
Analysis tools for agricultural data.
Provides statistical analysis and visualization capabilities.
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from typing import List, Dict, Optional, Tuple, Any
import warnings
warnings.filterwarnings('ignore')
class AgriculturalAnalyzer:
"""Provides analysis tools for agricultural intervention data."""
def __init__(self, data_loader):
self.data_loader = data_loader
self.prediction_models = {}
def analyze_weed_pressure_trends(self,
years: Optional[List[int]] = None,
plots: Optional[List[str]] = None) -> Dict[str, Any]:
"""Analyze weed pressure trends based on herbicide usage."""
herbicide_data = self.data_loader.get_herbicide_usage(years=years)
if plots:
herbicide_data = herbicide_data[herbicide_data['plot_name'].isin(plots)]
# Calculate trends
trends = {}
# Overall IFT trend by year
yearly_ift = herbicide_data.groupby('year')['ift_herbicide'].mean().reset_index()
trends['yearly_ift'] = yearly_ift
# IFT trend by plot
plot_ift = herbicide_data.groupby(['plot_name', 'year'])['ift_herbicide'].mean().reset_index()
trends['plot_ift'] = plot_ift
# IFT trend by crop type
crop_ift = herbicide_data.groupby(['crop_type', 'year'])['ift_herbicide'].mean().reset_index()
trends['crop_ift'] = crop_ift
# Statistical summary
summary_stats = {
'mean_ift': herbicide_data['ift_herbicide'].mean(),
'std_ift': herbicide_data['ift_herbicide'].std(),
'min_ift': herbicide_data['ift_herbicide'].min(),
'max_ift': herbicide_data['ift_herbicide'].max(),
'total_applications': herbicide_data['num_applications'].sum(),
'unique_plots': herbicide_data['plot_name'].nunique(),
'unique_crops': herbicide_data['crop_type'].nunique()
}
trends['summary'] = summary_stats
return trends
def create_weed_pressure_visualization(self,
years: Optional[List[int]] = None,
plots: Optional[List[str]] = None) -> go.Figure:
"""Create interactive visualization of weed pressure trends."""
trends = self.analyze_weed_pressure_trends(years=years, plots=plots)
# Create subplots
fig = make_subplots(
rows=2, cols=2,
subplot_titles=('IFT Evolution par Année', 'IFT par Parcelle',
'IFT par Type de Culture', 'Distribution IFT'),
specs=[[{"secondary_y": False}, {"secondary_y": False}],
[{"secondary_y": False}, {"secondary_y": False}]]
)
# Plot 1: Yearly IFT trend
yearly_data = trends['yearly_ift']
fig.add_trace(
go.Scatter(x=yearly_data['year'], y=yearly_data['ift_herbicide'],
mode='lines+markers', name='IFT Moyen',
line=dict(color='blue')),
row=1, col=1
)
# Plot 2: IFT by plot
plot_data = trends['plot_ift']
for plot in plot_data['plot_name'].unique():
plot_subset = plot_data[plot_data['plot_name'] == plot]
fig.add_trace(
go.Scatter(x=plot_subset['year'], y=plot_subset['ift_herbicide'],
mode='lines+markers', name=f'Parcelle {plot}',
showlegend=False),
row=1, col=2
)
# Plot 3: IFT by crop
crop_data = trends['crop_ift']
for crop in crop_data['crop_type'].unique()[:5]: # Limit to top 5 crops
crop_subset = crop_data[crop_data['crop_type'] == crop]
fig.add_trace(
go.Scatter(x=crop_subset['year'], y=crop_subset['ift_herbicide'],
mode='lines+markers', name=crop,
showlegend=False),
row=2, col=1
)
# Plot 4: IFT distribution
herbicide_data = self.data_loader.get_herbicide_usage(years=years)
if plots:
herbicide_data = herbicide_data[herbicide_data['plot_name'].isin(plots)]
fig.add_trace(
go.Histogram(x=herbicide_data['ift_herbicide'],
name='Distribution IFT',
showlegend=False),
row=2, col=2
)
# Update layout
fig.update_layout(
title_text="Analyse de la Pression Adventices (IFT Herbicides)",
height=800,
showlegend=True
)
# Update axes labels
fig.update_xaxes(title_text="Année", row=1, col=1)
fig.update_yaxes(title_text="IFT Herbicide", row=1, col=1)
fig.update_xaxes(title_text="Année", row=1, col=2)
fig.update_yaxes(title_text="IFT Herbicide", row=1, col=2)
fig.update_xaxes(title_text="Année", row=2, col=1)
fig.update_yaxes(title_text="IFT Herbicide", row=2, col=1)
fig.update_xaxes(title_text="IFT Herbicide", row=2, col=2)
fig.update_yaxes(title_text="Fréquence", row=2, col=2)
return fig
def analyze_crop_rotation_impact(self) -> pd.DataFrame:
"""Analyze the impact of crop rotation on weed pressure."""
df = self.data_loader.load_all_files()
# Group by plot and year to get crop sequences
plot_years = df.groupby(['plot_name', 'year'])['crop_type'].first().reset_index()
plot_years = plot_years.sort_values(['plot_name', 'year'])
# Create rotation sequences
rotations = []
for plot in plot_years['plot_name'].unique():
plot_data = plot_years[plot_years['plot_name'] == plot].sort_values('year')
crops = plot_data['crop_type'].tolist()
years = plot_data['year'].tolist()
for i in range(len(crops)-1):
rotations.append({
'plot_name': plot,
'year_from': years[i],
'year_to': years[i+1],
'crop_from': crops[i],
'crop_to': crops[i+1],
'rotation_type': f"{crops[i]} → {crops[i+1]}"
})
rotation_df = pd.DataFrame(rotations)
# Get herbicide usage for each rotation
herbicide_data = self.data_loader.get_herbicide_usage()
# Merge with rotation data
rotation_analysis = rotation_df.merge(
herbicide_data[['plot_name', 'year', 'ift_herbicide']],
left_on=['plot_name', 'year_to'],
right_on=['plot_name', 'year'],
how='left'
)
# Analyze rotation impact
rotation_impact = rotation_analysis.groupby('rotation_type').agg({
'ift_herbicide': ['mean', 'std', 'count']
}).round(3)
rotation_impact.columns = ['mean_ift', 'std_ift', 'count']
rotation_impact = rotation_impact.reset_index()
rotation_impact = rotation_impact[rotation_impact['count'] >= 2] # At least 2 observations
rotation_impact = rotation_impact.sort_values('mean_ift')
return rotation_impact
def predict_weed_pressure(self,
target_years: List[int] = [2025, 2026, 2027],
plots: Optional[List[str]] = None) -> Dict[str, Any]:
"""Predict weed pressure for the next 3 years."""
# Prepare training data
df = self.data_loader.load_all_files()
herbicide_data = self.data_loader.get_herbicide_usage()
# Create features for prediction
features_df = []
for plot in herbicide_data['plot_name'].unique():
if plots and plot not in plots:
continue
plot_data = herbicide_data[herbicide_data['plot_name'] == plot].sort_values('year')
for i in range(len(plot_data)):
row = plot_data.iloc[i].copy()
# Add historical features
if i > 0:
row['prev_ift'] = plot_data.iloc[i-1]['ift_herbicide']
row['prev_crop'] = plot_data.iloc[i-1]['crop_type']
else:
row['prev_ift'] = 0
row['prev_crop'] = 'unknown'
# Add trend features
if i >= 2:
recent_years = plot_data.iloc[i-2:i+1]
row['ift_trend'] = np.polyfit(range(3), recent_years['ift_herbicide'], 1)[0]
else:
row['ift_trend'] = 0
features_df.append(row)
features_df = pd.DataFrame(features_df)
# Prepare features for ML model
# Encode categorical variables
crop_dummies = pd.get_dummies(features_df['crop_type'], prefix='crop')
prev_crop_dummies = pd.get_dummies(features_df['prev_crop'], prefix='prev_crop')
plot_dummies = pd.get_dummies(features_df['plot_name'], prefix='plot')
X = pd.concat([
features_df[['year', 'plot_surface', 'prev_ift', 'ift_trend']],
crop_dummies,
prev_crop_dummies,
plot_dummies
], axis=1)
y = features_df['ift_herbicide']
# Remove rows with missing values
mask = ~(X.isnull().any(axis=1) | y.isnull())
X = X[mask]
y = y[mask]
# Train model
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Evaluate model
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Make predictions for target years
predictions = {}
for year in target_years:
year_predictions = []
# Get last known data for each plot
plot_columns = [col for col in X.columns if col.startswith('plot_')]
unique_plots = [col.replace('plot_', '') for col in plot_columns]
for plot in unique_plots:
if plots and plot not in plots:
continue
# Find last known data for this plot
plot_mask = features_df['plot_name'] == plot
if not plot_mask.any():
continue
last_data = features_df[plot_mask].iloc[-1]
# Create prediction features
pred_row = pd.Series(index=X.columns, dtype=float)
pred_row['year'] = year
pred_row['plot_surface'] = last_data['plot_surface']
pred_row['prev_ift'] = last_data['ift_herbicide']
pred_row['ift_trend'] = last_data.get('ift_trend', 0)
# Set plot dummy
plot_col = f'plot_{plot}'
if plot_col in pred_row.index:
pred_row[plot_col] = 1
# Assume same crop as last year for now
crop_col = f'crop_{last_data["crop_type"]}'
if crop_col in pred_row.index:
pred_row[crop_col] = 1
prev_crop_col = f'prev_crop_{last_data["crop_type"]}'
if prev_crop_col in pred_row.index:
pred_row[prev_crop_col] = 1
# Fill missing values with 0
pred_row = pred_row.fillna(0)
# Make prediction
pred_ift = model.predict([pred_row])[0]
year_predictions.append({
'plot_name': plot,
'year': year,
'predicted_ift': pred_ift,
'risk_level': 'low' if pred_ift < 1.0 else 'medium' if pred_ift < 2.0 else 'high'
})
predictions[year] = pd.DataFrame(year_predictions)
# Feature importance
feature_importance = pd.DataFrame({
'feature': X.columns,
'importance': model.feature_importances_
}).sort_values('importance', ascending=False)
return {
'predictions': predictions,
'model_performance': {'mse': mse, 'r2': r2},
'feature_importance': feature_importance
}
def identify_suitable_plots_for_sensitive_crops(self,
target_years: List[int] = [2025, 2026, 2027],
max_ift_threshold: float = 1.0) -> Dict[str, List[str]]:
"""Identify plots suitable for sensitive crops (peas, beans) based on low weed pressure."""
predictions = self.predict_weed_pressure(target_years=target_years)
suitable_plots = {}
for year in target_years:
if year not in predictions['predictions']:
continue
year_data = predictions['predictions'][year]
suitable = year_data[year_data['predicted_ift'] <= max_ift_threshold]
suitable_plots[year] = suitable['plot_name'].tolist()
return suitable_plots
def analyze_herbicide_alternatives(self) -> pd.DataFrame:
"""Analyze herbicide usage patterns and suggest alternatives."""
df = self.data_loader.load_all_files()
herbicides = df[df['is_herbicide'] == True]
# Analyze herbicide usage by product
herbicide_usage = herbicides.groupby(['produit', 'crop_type']).agg({
'quantitetot': ['sum', 'mean', 'count'],
'codeamm': 'first'
}).round(3)
herbicide_usage.columns = ['total_quantity', 'avg_quantity', 'applications', 'amm_code']
herbicide_usage = herbicide_usage.reset_index()
herbicide_usage = herbicide_usage.sort_values('applications', ascending=False)
# Identify most used herbicides
top_herbicides = herbicide_usage.head(20)
return top_herbicides
|