Spaces:
Sleeping
Sleeping
File size: 10,900 Bytes
dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 7ca901a dc128e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
"""MCP Server for Agricultural Weed Pressure Analysis"""
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
from data_loader import AgriculturalDataLoader
import warnings
warnings.filterwarnings('ignore')
class WeedPressureAnalyzer:
"""Analyze weed pressure and recommend plots for sensitive crops."""
def __init__(self):
self.data_loader = AgriculturalDataLoader()
self.data_cache = None
def load_data(self):
if self.data_cache is None:
self.data_cache = self.data_loader.load_all_files()
return self.data_cache
def calculate_herbicide_ift(self, years=None):
"""Calculate IFT for herbicides by plot and year."""
df = self.load_data()
if years:
df = df[df['year'].isin(years)]
herbicide_df = df[df['is_herbicide'] == True].copy()
if len(herbicide_df) == 0:
return pd.DataFrame()
ift_summary = herbicide_df.groupby(['plot_name', 'year', 'crop_type']).agg({
'produit': 'count',
'plot_surface': 'first',
'quantitetot': 'sum'
}).reset_index()
ift_summary['ift_herbicide'] = ift_summary['produit'] / ift_summary['plot_surface']
return ift_summary
def predict_weed_pressure(self, target_years=[2025, 2026, 2027]):
"""Predict weed pressure for future years."""
ift_data = self.calculate_herbicide_ift()
if len(ift_data) == 0:
return pd.DataFrame()
predictions = []
for plot in ift_data['plot_name'].unique():
plot_data = ift_data[ift_data['plot_name'] == plot].sort_values('year')
if len(plot_data) < 2:
continue
years = plot_data['year'].values
ift_values = plot_data['ift_herbicide'].values
if len(years) > 1:
slope = np.polyfit(years, ift_values, 1)[0]
intercept = np.polyfit(years, ift_values, 1)[1]
for target_year in target_years:
predicted_ift = slope * target_year + intercept
predicted_ift = max(0, predicted_ift)
if predicted_ift < 1.0:
risk_level = "Faible"
elif predicted_ift < 2.0:
risk_level = "Modéré"
else:
risk_level = "Élevé"
predictions.append({
'plot_name': plot,
'year': target_year,
'predicted_ift': predicted_ift,
'risk_level': risk_level,
'recent_crops': ', '.join(plot_data['crop_type'].tail(3).unique()),
'historical_avg_ift': plot_data['ift_herbicide'].mean()
})
return pd.DataFrame(predictions)
# Initialize analyzer
analyzer = WeedPressureAnalyzer()
def analyze_herbicide_trends(years_range, plot_filter):
"""Analyze herbicide usage trends over time."""
try:
if len(years_range) == 2:
years = list(range(int(years_range[0]), int(years_range[1]) + 1))
else:
years = [int(y) for y in years_range]
ift_data = analyzer.calculate_herbicide_ift(years=years)
if len(ift_data) == 0:
return None, "Aucune donnée d'herbicides trouvée."
if plot_filter != "Toutes":
ift_data = ift_data[ift_data['plot_name'] == plot_filter]
fig = px.line(ift_data,
x='year',
y='ift_herbicide',
color='plot_name',
title=f'Évolution de l\'IFT Herbicides',
labels={'ift_herbicide': 'IFT Herbicides', 'year': 'Année'})
summary = f"""
📊 **Analyse de l'IFT Herbicides**
**Statistiques:**
- IFT moyen: {ift_data['ift_herbicide'].mean():.2f}
- IFT maximum: {ift_data['ift_herbicide'].max():.2f}
- Nombre de parcelles: {ift_data['plot_name'].nunique()}
**Interprétation:**
- IFT < 1.0: Pression faible ✅
- IFT 1.0-2.0: Pression modérée ⚠️
- IFT > 2.0: Pression élevée ❌
"""
return fig, summary
except Exception as e:
return None, f"Erreur: {str(e)}"
def predict_future_weed_pressure():
"""Predict weed pressure for the next 3 years."""
try:
predictions = analyzer.predict_weed_pressure()
if len(predictions) == 0:
return None, "Impossible de générer des prédictions."
fig = px.bar(predictions,
x='plot_name',
y='predicted_ift',
color='risk_level',
facet_col='year',
title='Prédiction Pression Adventices (2025-2027)',
color_discrete_map={'Faible': 'green', 'Modéré': 'orange', 'Élevé': 'red'})
low_risk = len(predictions[predictions['risk_level'] == 'Faible'])
moderate_risk = len(predictions[predictions['risk_level'] == 'Modéré'])
high_risk = len(predictions[predictions['risk_level'] == 'Élevé'])
summary = f"""
🔮 **Prédictions 2025-2027**
**Répartition des risques:**
- ✅ Risque faible: {low_risk} prédictions
- ⚠️ Risque modéré: {moderate_risk} prédictions
- ❌ Risque élevé: {high_risk} prédictions
"""
return fig, summary
except Exception as e:
return None, f"Erreur: {str(e)}"
def recommend_sensitive_crop_plots():
"""Recommend plots for sensitive crops."""
try:
predictions = analyzer.predict_weed_pressure()
if len(predictions) == 0:
return None, "Aucune recommandation disponible."
suitable_plots = predictions[predictions['risk_level'] == "Faible"].copy()
if len(suitable_plots) > 0:
suitable_plots['recommendation_score'] = 100 - (suitable_plots['predicted_ift'] * 30)
suitable_plots = suitable_plots.sort_values('recommendation_score', ascending=False)
top_recommendations = suitable_plots.head(10)[['plot_name', 'year', 'predicted_ift', 'recommendation_score']]
summary = f"""
🌱 **Recommandations Cultures Sensibles**
**Top parcelles recommandées:**
{top_recommendations.to_string(index=False)}
**Critères:** IFT prédit < 1.0 (faible pression adventices)
"""
fig = px.scatter(suitable_plots,
x='predicted_ift',
y='recommendation_score',
color='year',
hover_data=['plot_name'],
title='Parcelles Recommandées pour Cultures Sensibles')
return fig, summary
else:
return None, "Aucune parcelle à faible risque identifiée."
except Exception as e:
return None, f"Erreur: {str(e)}"
def generate_technical_alternatives(herbicide_family):
"""Generate technical alternatives."""
summary = f"""
🔄 **Alternatives aux {herbicide_family}**
**🚜 Alternatives Mécaniques:**
• Faux-semis répétés avant implantation
• Binage mécanique en inter-rang
• Herse étrille en post-levée précoce
**🌾 Alternatives Culturales:**
• Rotation longue avec prairie temporaire
• Cultures intermédiaires piège à nitrates
• Densité de semis optimisée
**🧪 Alternatives Biologiques:**
• Stimulateurs de défenses naturelles
• Extraits végétaux (huiles essentielles)
• Bioherbicides à base de champignons
**📋 Plan d'Action:**
1. Tester sur petites surfaces
2. Former les équipes
3. Suivre l'efficacité
4. Documenter les résultats
"""
return summary
def get_available_plots():
"""Get available plots."""
try:
plots = analyzer.data_loader.get_plots_available()
return ["Toutes"] + plots
except:
return ["Toutes"]
# Create Gradio Interface
def create_mcp_interface():
with gr.Blocks(title="🚜 Analyse Pression Adventices", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🚜 Analyse Pression Adventices - CRA Bretagne
Anticiper et réduire la pression des adventices pour optimiser les cultures sensibles (pois, haricot).
""")
with gr.Tabs():
with gr.Tab("📈 Analyse Tendances"):
with gr.Row():
years_slider = gr.Slider(2014, 2024, value=[2020, 2024], step=1, label="Période")
plot_dropdown = gr.Dropdown(choices=get_available_plots(), value="Toutes", label="Parcelle")
analyze_btn = gr.Button("🔍 Analyser", variant="primary")
with gr.Row():
trends_plot = gr.Plot()
trends_summary = gr.Markdown()
analyze_btn.click(analyze_herbicide_trends, [years_slider, plot_dropdown], [trends_plot, trends_summary])
with gr.Tab("🔮 Prédictions"):
predict_btn = gr.Button("🎯 Prédire 2025-2027", variant="primary")
with gr.Row():
predictions_plot = gr.Plot()
predictions_summary = gr.Markdown()
predict_btn.click(predict_future_weed_pressure, outputs=[predictions_plot, predictions_summary])
with gr.Tab("🌱 Recommandations"):
recommend_btn = gr.Button("🎯 Recommander Parcelles", variant="primary")
with gr.Row():
recommendations_plot = gr.Plot()
recommendations_summary = gr.Markdown()
recommend_btn.click(recommend_sensitive_crop_plots, outputs=[recommendations_plot, recommendations_summary])
with gr.Tab("🔄 Alternatives"):
herbicide_type = gr.Dropdown(["Herbicides", "Fongicides"], value="Herbicides", label="Type")
alternatives_btn = gr.Button("💡 Générer Alternatives", variant="primary")
alternatives_output = gr.Markdown()
alternatives_btn.click(generate_technical_alternatives, [herbicide_type], [alternatives_output])
return demo
if __name__ == "__main__":
demo = create_mcp_interface()
demo.launch(mcp_server=True, server_name="0.0.0.0", server_port=7860, share=True)
|