Spaces:
Sleeping
Sleeping
File size: 16,731 Bytes
7ca901a d65ab6d 7ca901a d65ab6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
"""
MCP Server for Agricultural Data Analysis
Provides tools and resources for analyzing agricultural intervention data.
"""
import json
import logging
from typing import Any, Dict, List, Optional
from mcp.server import Server
from mcp.server.models import InitializationOptions
from mcp.server.stdio import stdio_server
from mcp.types import Resource, Tool, TextContent
import asyncio
import pandas as pd
from data_loader import AgriculturalDataLoader
from analysis_tools import AgriculturalAnalyzer
import plotly.io as pio
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("agricultural-mcp-server")
# Initialize data components
data_loader = AgriculturalDataLoader()
analyzer = AgriculturalAnalyzer(data_loader)
# Create MCP server
server = Server("agricultural-analysis")
@server.list_resources()
async def list_resources() -> List[Resource]:
"""List available resources."""
return [
Resource(
uri="agricultural://data/summary",
name="Data Summary",
mimeType="application/json",
description="Summary of available agricultural intervention data"
),
Resource(
uri="agricultural://data/years",
name="Available Years",
mimeType="application/json",
description="List of years with available data"
),
Resource(
uri="agricultural://data/plots",
name="Available Plots",
mimeType="application/json",
description="List of available plots/parcels"
),
Resource(
uri="agricultural://data/crops",
name="Available Crops",
mimeType="application/json",
description="List of available crop types"
),
Resource(
uri="agricultural://analysis/weed-pressure",
name="Weed Pressure Analysis",
mimeType="application/json",
description="Current weed pressure trends analysis"
),
Resource(
uri="agricultural://analysis/rotation-impact",
name="Crop Rotation Impact",
mimeType="application/json",
description="Analysis of crop rotation impact on weed pressure"
)
]
@server.read_resource()
async def read_resource(uri: str) -> str:
"""Read a specific resource."""
try:
if uri == "agricultural://data/summary":
df = data_loader.load_all_files()
summary = {
"total_records": len(df),
"date_range": {
"start": df['datedebut'].min().strftime('%Y-%m-%d') if df['datedebut'].min() else None,
"end": df['datedebut'].max().strftime('%Y-%m-%d') if df['datedebut'].max() else None
},
"unique_plots": df['plot_name'].nunique(),
"unique_crops": df['crop_type'].nunique(),
"herbicide_applications": len(df[df['is_herbicide'] == True]),
"years_covered": sorted(df['year'].unique().tolist())
}
return json.dumps(summary, indent=2)
elif uri == "agricultural://data/years":
years = data_loader.get_years_available()
return json.dumps({"available_years": years})
elif uri == "agricultural://data/plots":
plots = data_loader.get_plots_available()
return json.dumps({"available_plots": plots})
elif uri == "agricultural://data/crops":
crops = data_loader.get_crops_available()
return json.dumps({"available_crops": crops})
elif uri == "agricultural://analysis/weed-pressure":
trends = analyzer.analyze_weed_pressure_trends()
# Convert DataFrames to dict for JSON serialization
serializable_trends = {}
for key, value in trends.items():
if isinstance(value, pd.DataFrame):
serializable_trends[key] = value.to_dict('records')
else:
serializable_trends[key] = value
return json.dumps(serializable_trends, indent=2)
elif uri == "agricultural://analysis/rotation-impact":
rotation_impact = analyzer.analyze_crop_rotation_impact()
return json.dumps(rotation_impact.to_dict('records'), indent=2)
else:
raise ValueError(f"Unknown resource: {uri}")
except Exception as e:
logger.error(f"Error reading resource {uri}: {e}")
return json.dumps({"error": str(e)})
@server.list_tools()
async def list_tools() -> List[Tool]:
"""List available tools."""
return [
Tool(
name="filter_data",
description="Filter agricultural data by years, plots, crops, or intervention types",
inputSchema={
"type": "object",
"properties": {
"years": {
"type": "array",
"items": {"type": "integer"},
"description": "List of years to filter (e.g., [2022, 2023, 2024])"
},
"plots": {
"type": "array",
"items": {"type": "string"},
"description": "List of plot names to filter"
},
"crops": {
"type": "array",
"items": {"type": "string"},
"description": "List of crop types to filter"
},
"intervention_types": {
"type": "array",
"items": {"type": "string"},
"description": "List of intervention types to filter"
}
}
}
),
Tool(
name="analyze_weed_pressure",
description="Analyze weed pressure trends based on herbicide usage (IFT)",
inputSchema={
"type": "object",
"properties": {
"years": {
"type": "array",
"items": {"type": "integer"},
"description": "Years to analyze"
},
"plots": {
"type": "array",
"items": {"type": "string"},
"description": "Plots to analyze"
},
"include_visualization": {
"type": "boolean",
"description": "Whether to include visualization data",
"default": True
}
}
}
),
Tool(
name="predict_weed_pressure",
description="Predict weed pressure for the next 3 years using machine learning",
inputSchema={
"type": "object",
"properties": {
"target_years": {
"type": "array",
"items": {"type": "integer"},
"description": "Years to predict (default: [2025, 2026, 2027])",
"default": [2025, 2026, 2027]
},
"plots": {
"type": "array",
"items": {"type": "string"},
"description": "Specific plots to predict for (optional)"
}
}
}
),
Tool(
name="identify_suitable_plots",
description="Identify plots suitable for sensitive crops (peas, beans) based on low weed pressure",
inputSchema={
"type": "object",
"properties": {
"target_years": {
"type": "array",
"items": {"type": "integer"},
"description": "Years to evaluate (default: [2025, 2026, 2027])",
"default": [2025, 2026, 2027]
},
"max_ift_threshold": {
"type": "number",
"description": "Maximum IFT threshold for suitable plots (default: 1.0)",
"default": 1.0
}
}
}
),
Tool(
name="analyze_crop_rotation",
description="Analyze the impact of crop rotation patterns on weed pressure",
inputSchema={
"type": "object",
"properties": {}
}
),
Tool(
name="analyze_herbicide_alternatives",
description="Analyze herbicide usage patterns and identify most used products",
inputSchema={
"type": "object",
"properties": {}
}
),
Tool(
name="get_data_statistics",
description="Get comprehensive statistics about the agricultural data",
inputSchema={
"type": "object",
"properties": {
"years": {
"type": "array",
"items": {"type": "integer"},
"description": "Years to analyze (optional)"
},
"plots": {
"type": "array",
"items": {"type": "string"},
"description": "Plots to analyze (optional)"
}
}
}
)
]
@server.call_tool()
async def call_tool(name: str, arguments: Dict[str, Any]) -> List[TextContent]:
"""Execute a tool call."""
try:
if name == "filter_data":
df = data_loader.filter_data(
years=arguments.get("years"),
plots=arguments.get("plots"),
crops=arguments.get("crops"),
intervention_types=arguments.get("intervention_types")
)
result = {
"filtered_records": len(df),
"summary": {
"unique_plots": df['plot_name'].nunique(),
"unique_crops": df['crop_type'].nunique(),
"year_range": [int(df['year'].min()), int(df['year'].max())] if len(df) > 0 else [],
"herbicide_applications": len(df[df['is_herbicide'] == True])
},
"sample_data": df.head(10).to_dict('records') if len(df) > 0 else []
}
return [TextContent(
type="text",
text=json.dumps(result, indent=2, default=str)
)]
elif name == "analyze_weed_pressure":
trends = analyzer.analyze_weed_pressure_trends(
years=arguments.get("years"),
plots=arguments.get("plots")
)
# Convert DataFrames to dict for JSON serialization
serializable_trends = {}
for key, value in trends.items():
if isinstance(value, pd.DataFrame):
serializable_trends[key] = value.to_dict('records')
else:
serializable_trends[key] = value
# Include visualization if requested
if arguments.get("include_visualization", True):
try:
fig = analyzer.create_weed_pressure_visualization(
years=arguments.get("years"),
plots=arguments.get("plots")
)
# Convert plot to HTML
serializable_trends["visualization_html"] = pio.to_html(fig, include_plotlyjs=True)
except Exception as e:
serializable_trends["visualization_error"] = str(e)
return [TextContent(
type="text",
text=json.dumps(serializable_trends, indent=2, default=str)
)]
elif name == "predict_weed_pressure":
predictions = analyzer.predict_weed_pressure(
target_years=arguments.get("target_years", [2025, 2026, 2027]),
plots=arguments.get("plots")
)
# Convert DataFrames to dict for JSON serialization
serializable_predictions = {}
for key, value in predictions.items():
if key == "predictions":
serializable_predictions[key] = {}
for year, df in value.items():
serializable_predictions[key][year] = df.to_dict('records')
elif isinstance(value, pd.DataFrame):
serializable_predictions[key] = value.to_dict('records')
else:
serializable_predictions[key] = value
return [TextContent(
type="text",
text=json.dumps(serializable_predictions, indent=2, default=str)
)]
elif name == "identify_suitable_plots":
suitable_plots = analyzer.identify_suitable_plots_for_sensitive_crops(
target_years=arguments.get("target_years", [2025, 2026, 2027]),
max_ift_threshold=arguments.get("max_ift_threshold", 1.0)
)
return [TextContent(
type="text",
text=json.dumps(suitable_plots, indent=2)
)]
elif name == "analyze_crop_rotation":
rotation_impact = analyzer.analyze_crop_rotation_impact()
return [TextContent(
type="text",
text=json.dumps(rotation_impact.to_dict('records'), indent=2, default=str)
)]
elif name == "analyze_herbicide_alternatives":
herbicide_analysis = analyzer.analyze_herbicide_alternatives()
return [TextContent(
type="text",
text=json.dumps(herbicide_analysis.to_dict('records'), indent=2, default=str)
)]
elif name == "get_data_statistics":
df = data_loader.filter_data(
years=arguments.get("years"),
plots=arguments.get("plots")
)
stats = {
"general": {
"total_records": len(df),
"unique_plots": df['plot_name'].nunique(),
"unique_crops": df['crop_type'].nunique(),
"date_range": {
"start": df['datedebut'].min().strftime('%Y-%m-%d') if not df['datedebut'].isna().all() else None,
"end": df['datedebut'].max().strftime('%Y-%m-%d') if not df['datedebut'].isna().all() else None
}
},
"interventions": {
"total_herbicide": len(df[df['is_herbicide'] == True]),
"total_fungicide": len(df[df['is_fungicide'] == True]),
"total_insecticide": len(df[df['is_insecticide'] == True])
},
"top_crops": df['crop_type'].value_counts().head(10).to_dict(),
"top_plots": df['plot_name'].value_counts().head(10).to_dict(),
"yearly_distribution": df['year'].value_counts().sort_index().to_dict()
}
return [TextContent(
type="text",
text=json.dumps(stats, indent=2, default=str)
)]
else:
raise ValueError(f"Unknown tool: {name}")
except Exception as e:
logger.error(f"Error executing tool {name}: {e}")
return [TextContent(
type="text",
text=json.dumps({"error": str(e)}, indent=2)
)]
async def main():
"""Main function to run the MCP server."""
logger.info("Starting Agricultural MCP Server...")
# Initialize the server
async with stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="agricultural-analysis",
server_version="1.0.0",
capabilities=server.get_capabilities()
)
)
if __name__ == "__main__":
asyncio.run(main())
|