File size: 18,421 Bytes
7ca901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ecf5f5
 
 
5977115
7ca901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
"""
Gradio interface for the Agricultural MCP Server.
Provides a web interface for interacting with agricultural data analysis tools.
"""

import gradio as gr
import json
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
from data_loader import AgriculturalDataLoader
from analysis_tools import AgriculturalAnalyzer


# Initialize components
# Use Hugging Face dataset exclusively
data_loader = AgriculturalDataLoader()
print("🤗 Configured to use Hugging Face dataset exclusively")

analyzer = AgriculturalAnalyzer(data_loader)

# Global state for data
def load_initial_data():
    """Load and cache initial data."""
    try:
        df = data_loader.load_all_files()
        return df
    except Exception as e:
        print(f"Error loading data: {e}")
        return pd.DataFrame()

def get_data_summary():
    """Get summary of the agricultural data."""
    try:
        df = load_initial_data()
        if df.empty:
            return "Aucune donnée disponible"
        
        summary = f"""
        ## Résumé des Données Agricoles - Station Expérimentale de Kerguéhennec
        
        📊 **Statistiques Générales:**
        - **Total d'enregistrements:** {len(df):,}
        - **Parcelles uniques:** {df['plot_name'].nunique()}
        - **Types de cultures:** {df['crop_type'].nunique()}
        - **Années couvertes:** {', '.join(map(str, sorted(df['year'].unique())))}
        - **Applications herbicides:** {len(df[df['is_herbicide'] == True]):,}
        
        🌱 **Cultures principales:**
        {df['crop_type'].value_counts().head(5).to_string()}
        
        📍 **Parcelles principales:**
        {df['plot_name'].value_counts().head(5).to_string()}
        """
        return summary
    except Exception as e:
        return f"Erreur lors du chargement des données: {str(e)}"

def filter_and_analyze_data(years, plots, crops):
    """Filter data and provide analysis."""
    try:
        df = load_initial_data()
        if df.empty:
            return "Aucune donnée disponible", None
        
        # Convert inputs to lists if not None
        year_list = [int(y) for y in years] if years else None
        plot_list = plots if plots else None
        crop_list = crops if crops else None
        
        # Filter data
        filtered_df = data_loader.filter_data(
            years=year_list,
            plots=plot_list, 
            crops=crop_list
        )
        
        if filtered_df.empty:
            return "Aucune donnée trouvée avec ces filtres", None
        
        # Generate analysis
        analysis = f"""
        ## Analyse des Données Filtrées
        
        **Filtres appliqués:**
        - Années: {years if years else 'Toutes'}
        - Parcelles: {', '.join(plots) if plots else 'Toutes'}
        - Cultures: {', '.join(crops) if crops else 'Toutes'}
        
        **Résultats:**
        - Enregistrements filtrés: {len(filtered_df):,}
        - Applications herbicides: {len(filtered_df[filtered_df['is_herbicide'] == True]):,}
        - Parcelles concernées: {filtered_df['plot_name'].nunique()}
        - Cultures concernées: {filtered_df['crop_type'].nunique()}
        
        **Distribution par année:**
        {filtered_df['year'].value_counts().sort_index().to_string()}
        """
        
        # Create visualization
        yearly_dist = filtered_df['year'].value_counts().sort_index()
        fig = px.bar(
            x=yearly_dist.index, 
            y=yearly_dist.values,
            title="Distribution des Interventions par Année",
            labels={'x': 'Année', 'y': 'Nombre d\'Interventions'}
        )
        
        return analysis, fig
        
    except Exception as e:
        return f"Erreur lors de l'analyse: {str(e)}", None

def analyze_weed_pressure(years, plots):
    """Analyze weed pressure trends."""
    try:
        # Convert inputs
        year_list = [int(y) for y in years] if years else None
        plot_list = plots if plots else None
        
        # Get analysis
        trends = analyzer.analyze_weed_pressure_trends(years=year_list, plots=plot_list)
        
        # Format results
        summary_stats = trends['summary']
        analysis_text = f"""
        ## Analyse de la Pression Adventices (IFT Herbicides)
        
        **Statistiques globales:**
        - IFT moyen: {summary_stats['mean_ift']:.2f}
        - Écart-type: {summary_stats['std_ift']:.2f}
        - IFT minimum: {summary_stats['min_ift']:.2f}
        - IFT maximum: {summary_stats['max_ift']:.2f}
        - Total applications: {summary_stats['total_applications']}
        - Parcelles analysées: {summary_stats['unique_plots']}
        - Cultures analysées: {summary_stats['unique_crops']}
        
        **Interprétation:**
        - IFT < 1.0: Pression faible (adapté aux cultures sensibles)
        - IFT 1.0-2.0: Pression modérée
        - IFT > 2.0: Pression élevée
        """
        
        # Create visualization
        fig = analyzer.create_weed_pressure_visualization(years=year_list, plots=plot_list)
        
        return analysis_text, fig
        
    except Exception as e:
        return f"Erreur lors de l'analyse de pression: {str(e)}", None

def predict_future_weed_pressure(target_years, max_ift):
    """Predict weed pressure for future years."""
    try:
        # Convert target years
        year_list = [int(y) for y in target_years] if target_years else [2025, 2026, 2027]
        
        # Get predictions
        predictions = analyzer.predict_weed_pressure(target_years=year_list)
        
        # Format results
        model_perf = predictions['model_performance']
        results_text = f"""
        ## Prédiction de la Pression Adventices
        
        **Performance du modèle:**
        - R² Score: {model_perf['r2']:.3f}
        - Erreur quadratique moyenne: {model_perf['mse']:.3f}
        
        **Prédictions par année:**
        """
        
        # Add predictions for each year
        prediction_data = []
        for year in year_list:
            if year in predictions['predictions']:
                year_pred = predictions['predictions'][year]
                results_text += f"\n**{year}:**\n"
                
                for _, row in year_pred.iterrows():
                    results_text += f"- {row['plot_name']}: IFT {row['predicted_ift']:.2f} (Risque: {row['risk_level']})\n"
                    prediction_data.append({
                        'Année': year,
                        'Parcelle': row['plot_name'],
                        'IFT_Prédit': row['predicted_ift'],
                        'Niveau_Risque': row['risk_level']
                    })
        
        # Identify suitable plots
        suitable_plots = analyzer.identify_suitable_plots_for_sensitive_crops(
            target_years=year_list,
            max_ift_threshold=max_ift
        )
        
        results_text += f"\n\n**Parcelles adaptées aux cultures sensibles (IFT < {max_ift}):**\n"
        for year, plots in suitable_plots.items():
            if plots:
                results_text += f"- {year}: {', '.join(plots)}\n"
            else:
                results_text += f"- {year}: Aucune parcelle adaptée\n"
        
        # Create visualization
        if prediction_data:
            pred_df = pd.DataFrame(prediction_data)
            fig = px.scatter(
                pred_df, 
                x='Année', 
                y='IFT_Prédit', 
                color='Niveau_Risque',
                size='IFT_Prédit',
                hover_data=['Parcelle'],
                title="Prédictions IFT par Parcelle et Année",
                color_discrete_map={'low': 'green', 'medium': 'orange', 'high': 'red'}
            )
            fig.add_hline(y=max_ift, line_dash="dash", line_color="red", 
                         annotation_text=f"Seuil cultures sensibles ({max_ift})")
            
            return results_text, fig
        else:
            return results_text, None
        
    except Exception as e:
        return f"Erreur lors de la prédiction: {str(e)}", None

def analyze_crop_rotation():
    """Analyze crop rotation impact."""
    try:
        rotation_impact = analyzer.analyze_crop_rotation_impact()
        
        if rotation_impact.empty:
            return "Pas assez de données pour analyser les rotations", None
        
        analysis_text = f"""
        ## Impact des Rotations sur la Pression Adventices
        
        **Rotations les plus favorables (IFT moyen le plus bas):**
        """
        
        # Show top 10 best rotations
        best_rotations = rotation_impact.head(10)
        for _, row in best_rotations.iterrows():
            analysis_text += f"\n- **{row['rotation_type']}**"
            analysis_text += f"\n  - IFT moyen: {row['mean_ift']:.2f}"
            analysis_text += f"\n  - Écart-type: {row['std_ift']:.2f}"
            analysis_text += f"\n  - Observations: {row['count']}\n"
        
        # Create visualization
        top_20 = rotation_impact.head(20)
        fig = px.bar(
            top_20,
            x='mean_ift',
            y='rotation_type',
            orientation='h',
            title="Impact des Rotations sur l'IFT Herbicide (Top 20)",
            labels={'mean_ift': 'IFT Moyen', 'rotation_type': 'Type de Rotation'},
            color='mean_ift',
            color_continuous_scale='RdYlGn_r'
        )
        fig.update_layout(height=800)
        
        return analysis_text, fig
        
    except Exception as e:
        return f"Erreur lors de l'analyse des rotations: {str(e)}", None

def analyze_herbicide_usage():
    """Analyze herbicide usage patterns."""
    try:
        herbicide_analysis = analyzer.analyze_herbicide_alternatives()
        
        analysis_text = f"""
        ## Analyse des Herbicides Utilisés
        
        **Herbicides les plus utilisés:**
        """
        
        top_herbicides = herbicide_analysis.head(15)
        for _, row in top_herbicides.iterrows():
            analysis_text += f"\n- **{row['produit']}** ({row['crop_type']})"
            analysis_text += f"\n  - Applications: {row['applications']}"
            analysis_text += f"\n  - Quantité totale: {row['total_quantity']:.1f}"
            analysis_text += f"\n  - Quantité moyenne: {row['avg_quantity']:.1f}"
            if not pd.isna(row['amm_code']):
                analysis_text += f"\n  - Code AMM: {row['amm_code']}"
            analysis_text += "\n"
        
        # Create visualization
        fig = px.bar(
            top_herbicides.head(10),
            x='applications',
            y='produit',
            orientation='h',
            title="Herbicides les Plus Utilisés (Nombre d'Applications)",
            labels={'applications': 'Nombre d\'Applications', 'produit': 'Produit'},
            color='applications'
        )
        fig.update_layout(height=600)
        
        return analysis_text, fig
        
    except Exception as e:
        return f"Erreur lors de l'analyse des herbicides: {str(e)}", None

# Create Gradio interface
def create_gradio_app():
    """Create the Gradio application."""
    
    # Load data for dropdowns
    try:
        df = load_initial_data()
        available_years = sorted(df['year'].unique()) if not df.empty else []
        available_plots = sorted(df['plot_name'].unique()) if not df.empty else []
        available_crops = sorted(df['crop_type'].unique()) if not df.empty else []
    except:
        available_years = []
        available_plots = []
        available_crops = []
    
    with gr.Blocks(title="🚜 Analyse Agricole - Station de Kerguéhennec", theme=gr.themes.Soft()) as app:
        gr.Markdown("""
        # 🚜 Analyse des Données Agricoles
        ## Station Expérimentale de Kerguéhennec
        
        ### Outil d'aide à la décision pour la réduction des herbicides et l'identification des parcelles adaptées aux cultures sensibles
        """)
        
        with gr.Tabs():
            # Tab 1: Data Overview
            with gr.Tab("📊 Aperçu des Données"):
                gr.Markdown("## Résumé des données disponibles")
                summary_output = gr.Markdown(value=get_data_summary())
                refresh_btn = gr.Button("🔄 Actualiser", variant="secondary")
                refresh_btn.click(get_data_summary, outputs=summary_output)
            
            # Tab 2: Data Filtering
            with gr.Tab("🔍 Filtrage et Exploration"):
                gr.Markdown("## Filtrer et explorer les données")
                
                with gr.Row():
                    with gr.Column():
                        years_filter = gr.CheckboxGroup(
                            choices=[str(y) for y in available_years],
                            label="Années",
                            value=[str(y) for y in available_years[-3:]] if available_years else []
                        )
                        plots_filter = gr.CheckboxGroup(
                            choices=available_plots,
                            label="Parcelles", 
                            value=available_plots[:5] if available_plots else []
                        )
                        crops_filter = gr.CheckboxGroup(
                            choices=available_crops,
                            label="Cultures",
                            value=available_crops[:5] if available_crops else []
                        )
                        
                        analyze_btn = gr.Button("📈 Analyser", variant="primary")
                
                with gr.Column():
                    filter_results = gr.Markdown()
                    filter_plot = gr.Plot()
                
                analyze_btn.click(
                    filter_and_analyze_data,
                    inputs=[years_filter, plots_filter, crops_filter],
                    outputs=[filter_results, filter_plot]
                )
            
            # Tab 3: Weed Pressure Analysis
            with gr.Tab("🌿 Pression Adventices"):
                gr.Markdown("## Analyse de la pression adventices (IFT Herbicides)")
                
                with gr.Row():
                    with gr.Column():
                        years_pressure = gr.CheckboxGroup(
                            choices=[str(y) for y in available_years],
                            label="Années à analyser",
                            value=[str(y) for y in available_years] if available_years else []
                        )
                        plots_pressure = gr.CheckboxGroup(
                            choices=available_plots,
                            label="Parcelles à analyser",
                            value=available_plots if len(available_plots) <= 10 else available_plots[:10]
                        )
                        
                        pressure_btn = gr.Button("🔬 Analyser la Pression", variant="primary")
                
                with gr.Column():
                    pressure_results = gr.Markdown()
                    pressure_plot = gr.Plot()
                
                pressure_btn.click(
                    analyze_weed_pressure,
                    inputs=[years_pressure, plots_pressure],
                    outputs=[pressure_results, pressure_plot]
                )
            
            # Tab 4: Predictions
            with gr.Tab("🔮 Prédictions"):
                gr.Markdown("## Prédiction de la pression adventices")
                
                with gr.Row():
                    with gr.Column():
                        target_years = gr.CheckboxGroup(
                            choices=["2025", "2026", "2027"],
                            label="Années à prédire",
                            value=["2025", "2026", "2027"]
                        )
                        max_ift = gr.Slider(
                            minimum=0.5,
                            maximum=3.0,
                            value=1.0,
                            step=0.1,
                            label="Seuil IFT max pour cultures sensibles"
                        )
                        
                        predict_btn = gr.Button("🎯 Prédire", variant="primary")
                
                with gr.Column():
                    prediction_results = gr.Markdown()
                    prediction_plot = gr.Plot()
                
                predict_btn.click(
                    predict_future_weed_pressure,
                    inputs=[target_years, max_ift],
                    outputs=[prediction_results, prediction_plot]
                )
            
            # Tab 5: Crop Rotation
            with gr.Tab("🔄 Rotations"):
                gr.Markdown("## Impact des rotations culturales")
                
                rotation_btn = gr.Button("📊 Analyser les Rotations", variant="primary")
                rotation_results = gr.Markdown()
                rotation_plot = gr.Plot()
                
                rotation_btn.click(
                    analyze_crop_rotation,
                    outputs=[rotation_results, rotation_plot]
                )
            
            # Tab 6: Herbicide Analysis
            with gr.Tab("💊 Herbicides"):
                gr.Markdown("## Analyse des herbicides utilisés")
                
                herbicide_btn = gr.Button("🧪 Analyser les Herbicides", variant="primary")
                herbicide_results = gr.Markdown()
                herbicide_plot = gr.Plot()
                
                herbicide_btn.click(
                    analyze_herbicide_usage,
                    outputs=[herbicide_results, herbicide_plot]
                )
        
        gr.Markdown("""
        ---
        **Note:** Cet outil utilise les données historiques d'interventions de la Station Expérimentale de Kerguéhennec 
        pour analyser la pression adventices et identifier les parcelles les plus adaptées aux cultures sensibles 
        comme le pois et le haricot.
        """)
    
    return app

# Launch the app
if __name__ == "__main__":
    app = create_gradio_app()
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True
    )