File size: 23,794 Bytes
2ce9eab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
"""MCP Server for Agricultural Weed Pressure Analysis"""

import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
from data_loader import AgriculturalDataLoader
import warnings
warnings.filterwarnings('ignore')

class WeedPressureAnalyzer:
    """Analyze weed pressure and recommend plots for sensitive crops."""
    
    def __init__(self):
        self.data_loader = AgriculturalDataLoader()
        self.data_cache = None
        
    def load_data(self):
        if self.data_cache is None:
            self.data_cache = self.data_loader.load_all_files()
        return self.data_cache
    
    def calculate_herbicide_ift(self, years=None):
        """Calculate IFT for herbicides by plot and year."""
        df = self.load_data()
        
        if years:
            df = df[df['year'].isin(years)]
        
        herbicide_df = df[df['is_herbicide'] == True].copy()
        
        if len(herbicide_df) == 0:
            return pd.DataFrame()
        
        ift_summary = herbicide_df.groupby(['plot_name', 'year', 'crop_type']).agg({
            'produit': 'count',
            'plot_surface': 'first',
            'quantitetot': 'sum'
        }).reset_index()
        
        ift_summary['ift_herbicide'] = ift_summary['produit'] / ift_summary['plot_surface']
        
        return ift_summary
    
    def predict_weed_pressure(self, target_years=[2025, 2026, 2027]):
        """Predict weed pressure for future years."""
        ift_data = self.calculate_herbicide_ift()
        
        if len(ift_data) == 0:
            return pd.DataFrame()
        
        predictions = []
        
        for plot in ift_data['plot_name'].unique():
            plot_data = ift_data[ift_data['plot_name'] == plot].sort_values('year')
            
            if len(plot_data) < 2:
                continue
                
            years = plot_data['year'].values
            ift_values = plot_data['ift_herbicide'].values
            
            if len(years) > 1:
                slope = np.polyfit(years, ift_values, 1)[0]
                intercept = np.polyfit(years, ift_values, 1)[1]
                
                for target_year in target_years:
                    predicted_ift = slope * target_year + intercept
                    predicted_ift = max(0, predicted_ift)
                    
                    if predicted_ift < 1.0:
                        risk_level = "Faible"
                    elif predicted_ift < 2.0:
                        risk_level = "Modéré"
                    else:
                        risk_level = "Élevé"
                    
                    predictions.append({
                        'plot_name': plot,
                        'year': target_year,
                        'predicted_ift': predicted_ift,
                        'risk_level': risk_level,
                        'recent_crops': ', '.join(plot_data['crop_type'].tail(3).unique()),
                        'historical_avg_ift': plot_data['ift_herbicide'].mean()
                    })
        
        return pd.DataFrame(predictions)

# Initialize analyzer
analyzer = WeedPressureAnalyzer()




def analyze_herbicide_trends(year_start, year_end, plot_filter):
    """
    Analyze herbicide usage trends over time by calculating IFT (Treatment Frequency Index).
    
    This tool calculates the IFT (Indice de Fréquence de Traitement) for herbicides, which represents
    the number of herbicide applications per hectare. It provides visualizations and statistics to
    understand weed pressure evolution over time.
    
    Args:
        year_start (int): Starting year for analysis (2014-2025)
        year_end (int): Ending year for analysis (2014-2025) 
        plot_filter (str): Specific plot name or "Toutes" for all plots
        
    Returns:
        tuple: (plotly_figure, markdown_summary)
            - plotly_figure: Interactive line chart showing IFT evolution by plot and year
            - markdown_summary: Detailed statistics including mean/max IFT, risk distribution
    """
    try:
        # Créer la liste des années à partir des deux sliders
        start_year = int(year_start)
        end_year = int(year_end)
        
        # S'assurer que start <= end
        if start_year > end_year:
            start_year, end_year = end_year, start_year
            
        years = list(range(start_year, end_year + 1))
        
        ift_data = analyzer.calculate_herbicide_ift(years=years)
        
        if len(ift_data) == 0:
            return None, "Aucune donnée d'herbicides trouvée pour la période sélectionnée."
        
        # Filtrage par parcelle si nécessaire
        if plot_filter and plot_filter != "Toutes":
            ift_data = ift_data[ift_data['plot_name'] == plot_filter]
        
        if len(ift_data) == 0:
            return None, f"Aucune donnée trouvée pour la parcelle '{plot_filter}' sur la période {years[0]}-{years[-1]}."
        
        # Création du graphique
        fig = px.line(ift_data, 
                     x='year', 
                     y='ift_herbicide',
                     color='plot_name',
                     title=f'Évolution de l\'IFT Herbicides ({years[0]}-{years[-1]})',
                     labels={'ift_herbicide': 'IFT Herbicides', 'year': 'Année'},
                     markers=True)
        
        fig.update_layout(
            height=500,
            xaxis_title="Année",
            yaxis_title="IFT Herbicides",
            legend_title="Parcelle"
        )
        
        # Ajout d'une ligne de référence IFT = 2.0
        fig.add_hline(y=2.0, line_dash="dash", line_color="red", 
                     annotation_text="Seuil IFT élevé (2.0)", annotation_position="top right")
        fig.add_hline(y=1.0, line_dash="dash", line_color="orange", 
                     annotation_text="Seuil IFT modéré (1.0)", annotation_position="bottom right")
        
        # Calcul des statistiques
        ift_mean = ift_data['ift_herbicide'].mean()
        ift_max = ift_data['ift_herbicide'].max()
        ift_min = ift_data['ift_herbicide'].min()
        n_plots = ift_data['plot_name'].nunique()
        n_records = len(ift_data)
        
        # Classification des niveaux de risque
        low_risk = len(ift_data[ift_data['ift_herbicide'] < 1.0])
        moderate_risk = len(ift_data[(ift_data['ift_herbicide'] >= 1.0) & (ift_data['ift_herbicide'] < 2.0)])
        high_risk = len(ift_data[ift_data['ift_herbicide'] >= 2.0])
        
        summary = f"""
📊 **Analyse de l'IFT Herbicides ({years[0]}-{years[-1]})**

**Période analysée:** {years[0]} à {years[-1]}
**Parcelle(s):** {plot_filter if plot_filter != "Toutes" else "Toutes les parcelles"}

**Statistiques globales:**
- IFT moyen: {ift_mean:.2f}
- IFT minimum: {ift_min:.2f}
- IFT maximum: {ift_max:.2f}
- Nombre de parcelles: {n_plots}
- Nombre d'observations: {n_records}

**Répartition des niveaux de pression:**
- 🟢 Faible (IFT < 1.0): {low_risk} observations ({low_risk/n_records*100:.1f}%)
- 🟡 Modérée (1.0 ≤ IFT < 2.0): {moderate_risk} observations ({moderate_risk/n_records*100:.1f}%)
- 🔴 Élevée (IFT ≥ 2.0): {high_risk} observations ({high_risk/n_records*100:.1f}%)

**Interprétation:**
- IFT < 1.0: Pression adventices faible ✅
- 1.0 ≤ IFT < 2.0: Pression adventices modérée ⚠️
- IFT ≥ 2.0: Pression adventices élevée ❌
        """
        
        return fig, summary
        
    except Exception as e:
        import traceback
        error_msg = f"Erreur dans l'analyse: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return None, error_msg

def predict_future_weed_pressure():
    """
    Predict weed pressure for the next 3 years (2025-2027) using linear regression on historical IFT data.
    
    This tool uses historical herbicide IFT data to predict future weed pressure. It applies linear
    regression to each plot's IFT evolution over time and extrapolates to 2025-2027. Risk levels are
    classified as: Faible (IFT < 1.0), Modéré (1.0 ≤ IFT < 2.0), Élevé (IFT ≥ 2.0).
    
    Prediction Method:
    1. Calculate historical IFT for each plot/year combination
    2. Apply linear regression: IFT = slope × year + intercept
    3. Extrapolate to target years 2025-2027
    4. Classify risk levels based on predicted IFT values
    5. Include recent crop history and average historical IFT for context
    
    Returns:
        tuple: (plotly_figure, markdown_summary)
            - plotly_figure: Bar chart showing predicted IFT by plot and year with risk color coding
            - markdown_summary: Risk distribution statistics and interpretation
    """
    try:
        predictions = analyzer.predict_weed_pressure()
        
        if len(predictions) == 0:
            return None, "Impossible de générer des prédictions."
        
        fig = px.bar(predictions, 
                    x='plot_name', 
                    y='predicted_ift',
                    color='risk_level',
                    facet_col='year',
                    title='Prédiction Pression Adventices (2025-2027)',
                    color_discrete_map={'Faible': 'green', 'Modéré': 'orange', 'Élevé': 'red'})
        
        low_risk = len(predictions[predictions['risk_level'] == 'Faible'])
        moderate_risk = len(predictions[predictions['risk_level'] == 'Modéré'])
        high_risk = len(predictions[predictions['risk_level'] == 'Élevé'])
        
        summary = f"""
🔮 **Prédictions 2025-2027**

**Répartition des risques:**
- ✅ Risque faible: {low_risk} prédictions
- ⚠️ Risque modéré: {moderate_risk} prédictions  
- ❌ Risque élevé: {high_risk} prédictions
        """
        
        return fig, summary
        
    except Exception as e:
        return None, f"Erreur: {str(e)}"

def recommend_sensitive_crop_plots():
    """
    Recommend plots suitable for sensitive crops (pois, haricot) based on predicted weed pressure.
    
    This tool identifies plots with low predicted weed pressure (IFT < 1.0) and calculates a
    recommendation score to rank them for sensitive crop cultivation.
    
    Recommendation Method:
    1. Get predicted IFT for 2025-2027 from predict_future_weed_pressure()
    2. Filter plots with risk_level = "Faible" (IFT < 1.0)
    3. Calculate recommendation_score = 100 - (predicted_ift × 30)
    4. Sort plots by recommendation score (higher = better)
    5. Include recent crop history and historical average IFT for context
    
    Recommendation Score:
    - 100-70: Excellent for sensitive crops
    - 70-50: Good for sensitive crops with monitoring
    - 50-0: Requires careful management
    
    Returns:
        tuple: (plotly_figure, markdown_summary)
            - plotly_figure: Scatter plot showing predicted IFT vs recommendation score
            - markdown_summary: Top recommended plots with scores and criteria
    """
    try:
        predictions = analyzer.predict_weed_pressure()
        
        if len(predictions) == 0:
            return None, "Aucune recommandation disponible."
        
        suitable_plots = predictions[predictions['risk_level'] == "Faible"].copy()
        
        if len(suitable_plots) > 0:
            suitable_plots['recommendation_score'] = 100 - (suitable_plots['predicted_ift'] * 30)
            suitable_plots = suitable_plots.sort_values('recommendation_score', ascending=False)
            
            top_recommendations = suitable_plots.head(10)[['plot_name', 'year', 'predicted_ift', 'recommendation_score']]
            
            summary = f"""
🌱 **Recommandations Cultures Sensibles**

**Top parcelles recommandées:**
{top_recommendations.to_string(index=False)}

**Critères:** IFT prédit < 1.0 (faible pression adventices)
            """
            
            fig = px.scatter(suitable_plots, 
                           x='predicted_ift', 
                           y='recommendation_score',
                           color='year',
                           hover_data=['plot_name'],
                           title='Parcelles Recommandées pour Cultures Sensibles')
            
            return fig, summary
        else:
            return None, "Aucune parcelle à faible risque identifiée."
        
    except Exception as e:
        return None, f"Erreur: {str(e)}"

def explore_raw_data(year_start, year_end, plot_filter, crop_filter, intervention_filter):
    """
    Explore raw agricultural intervention data with filtering capabilities.
    
    This tool provides access to the raw dataset from the Station Expérimentale de Kerguéhennec
    (2014-2025) with filtering options to explore specific subsets of data.
    
    Args:
        year_start (int): Starting year for filtering (2014-2025)
        year_end (int): Ending year for filtering (2014-2025)
        plot_filter (str): Specific plot name or "Toutes" for all plots
        crop_filter (str): Specific crop type or "Toutes" for all crops
        intervention_filter (str): Specific intervention type or "Toutes" for all interventions
        
    Returns:
        tuple: (plotly_figure, markdown_summary)
            - plotly_figure: Interactive data table or visualization
            - markdown_summary: Data summary with statistics and filtering info
    """
    try:
        # Charger les données
        df = analyzer.load_data()
        
        # Appliquer les filtres
        if year_start and year_end:
            df = df[(df['year'] >= year_start) & (df['year'] <= year_end)]
        
        if plot_filter and plot_filter != "Toutes":
            df = df[df['plot_name'] == plot_filter]
            
        if crop_filter and crop_filter != "Toutes":
            df = df[df['crop_type'] == crop_filter]
            
        if intervention_filter and intervention_filter != "Toutes":
            df = df[df['intervention_type'] == intervention_filter]
        
        if len(df) == 0:
            return None, "Aucune donnée trouvée avec les filtres sélectionnés."
        
        # Créer un résumé des données
        summary = f"""
📊 **Exploration des Données Brutes**

**Filtres appliqués:**
- Période: {year_start}-{year_end}
- Parcelle: {plot_filter}
- Culture: {crop_filter}
- Type d'intervention: {intervention_filter}

**Statistiques:**
- Nombre total d'enregistrements: {len(df):,}
- Nombre de parcelles: {df['plot_name'].nunique()}
- Nombre d'années: {df['year'].nunique()}
- Types de cultures: {df['crop_type'].nunique()}
- Types d'interventions: {df['intervention_type'].nunique()}

**Répartition par année:**
{df['year'].value_counts().sort_index().to_string()}

**Top 10 parcelles:**
{df['plot_name'].value_counts().head(10).to_string()}

**Top 10 cultures:**
{df['crop_type'].value_counts().head(10).to_string()}

**Top 10 interventions:**
{df['intervention_type'].value_counts().head(10).to_string()}
        """
        
        # Créer une visualisation des données
        if len(df) > 0:
            # Graphique des interventions par année
            yearly_counts = df.groupby('year').size().reset_index(name='count')
            fig = px.bar(yearly_counts, x='year', y='count', 
                        title=f'Nombre d\'interventions par année ({year_start}-{year_end})',
                        labels={'count': 'Nombre d\'interventions', 'year': 'Année'})
            
            fig.update_layout(height=400)
            return fig, summary
        else:
            return None, summary
            
    except Exception as e:
        return None, f"Erreur lors de l'exploration des données: {str(e)}"

def get_available_plots():
    """Get available plots."""
    try:
        df = analyzer.load_data()
        plots = sorted(df['plot_name'].dropna().unique().tolist())
        return ["Toutes"] + plots
    except Exception as e:
        print(f"Erreur lors du chargement des parcelles: {e}")
        return ["Toutes", "Champ ferme Bas", "Etang Milieu", "Lann Chebot"]

def get_available_crops():
    """Get available crop types."""
    try:
        df = analyzer.load_data()
        crops = sorted(df['crop_type'].dropna().unique().tolist())
        return ["Toutes"] + crops
    except Exception as e:
        print(f"Erreur lors du chargement des cultures: {e}")
        return ["Toutes", "blé tendre hiver", "pois de conserve", "haricot mange-tout industrie"]

def get_available_interventions():
    """Get available intervention types."""
    try:
        df = analyzer.load_data()
        interventions = sorted(df['intervention_type'].dropna().unique().tolist())
        return ["Toutes"] + interventions
    except Exception as e:
        print(f"Erreur lors du chargement des interventions: {e}")
        return ["Toutes", "Traitement et protection des cultures", "Fertilisation", "Travail et Entretien du sol"]

# Create Gradio Interface
def create_mcp_interface():
    with gr.Blocks(title="🚜 Analyse Pression Adventices", theme=gr.themes.Soft()) as demo:
        gr.Markdown("""
        # 🚜 Analyse Pression Adventices - CRA Bretagne
        
        Anticiper et réduire la pression des adventices pour optimiser les cultures sensibles (pois, haricot).
        """)
        
        with gr.Tabs():
            with gr.Tab("📈 Analyse Tendances"):
                gr.Markdown("### Analyser l'évolution de l'IFT herbicides par parcelle et période")
                gr.Markdown("""
                **Calcul de l'IFT (Indice de Fréquence de Traitement) :**
                - IFT = Nombre d'applications herbicides / Surface de la parcelle
                - Seuils d'interprétation :
                  - 🟢 Faible : IFT < 1.0 (pression adventices faible)
                  - 🟡 Modéré : 1.0 ≤ IFT < 2.0 (pression modérée)
                  - 🔴 Élevé : IFT ≥ 2.0 (pression élevée)
                """)
                
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            year_start = gr.Slider(
                                minimum=2014, 
                                maximum=2025, 
                                value=2020, 
                                step=1, 
                                label="Année de début"
                            )
                            year_end = gr.Slider(
                                minimum=2014, 
                                maximum=2025, 
                                value=2025, 
                                step=1, 
                                label="Année de fin"
                            )
                        plot_dropdown = gr.Dropdown(
                            choices=get_available_plots(), 
                            value="Toutes", 
                            label="Filtrer par parcelle",
                            info="Choisissez une parcelle spécifique ou toutes"
                        )
                        analyze_btn = gr.Button("🔍 Analyser les Tendances", variant="primary", size="lg")
                
                with gr.Row():
                    with gr.Column(scale=2):
                        trends_plot = gr.Plot(label="Graphique d'évolution")
                    with gr.Column(scale=1):
                        trends_summary = gr.Markdown(label="Résumé statistique")
                
                analyze_btn.click(
                    analyze_herbicide_trends, 
                    inputs=[year_start, year_end, plot_dropdown], 
                    outputs=[trends_plot, trends_summary]
                )
            
            with gr.Tab("🔮 Prédictions"):
                gr.Markdown("### Prédiction de la pression adventices 2025-2027")
                gr.Markdown("""
                **Méthode de prédiction :**
                1. Calcul de l'IFT historique par parcelle et année
                2. Régression linéaire : IFT = pente × année + ordonnée_origine
                3. Extrapolation aux années 2025-2027
                4. Classification des risques :
                   - 🟢 Faible : IFT < 1.0
                   - 🟡 Modéré : 1.0 ≤ IFT < 2.0  
                   - 🔴 Élevé : IFT ≥ 2.0
                """)
                
                predict_btn = gr.Button("🎯 Prédire 2025-2027", variant="primary")
                
                with gr.Row():
                    predictions_plot = gr.Plot()
                    predictions_summary = gr.Markdown()
                
                predict_btn.click(predict_future_weed_pressure, outputs=[predictions_plot, predictions_summary])
            
            with gr.Tab("🌱 Recommandations"):
                gr.Markdown("### Recommandations pour cultures sensibles (pois, haricot)")
                gr.Markdown("""
                **Méthode de recommandation :**
                1. Prédiction IFT 2025-2027 par régression linéaire
                2. Filtrage des parcelles à faible risque (IFT < 1.0)
                3. Calcul du score de recommandation : 100 - (IFT_prédit × 30)
                4. Classement par score (plus élevé = meilleur)
                """)
                
                recommend_btn = gr.Button("🎯 Recommander Parcelles", variant="primary")
                
                with gr.Row():
                    recommendations_plot = gr.Plot()
                    recommendations_summary = gr.Markdown()
                
                recommend_btn.click(recommend_sensitive_crop_plots, outputs=[recommendations_plot, recommendations_summary])
            
            with gr.Tab("📊 Exploration Données"):
                gr.Markdown("### Explorer les données brutes de la Station Expérimentale de Kerguéhennec")
                
                with gr.Row():
                    with gr.Column():
                        data_year_start = gr.Slider(
                            minimum=2014, 
                            maximum=2025, 
                            value=2020, 
                            step=1, 
                            label="Année de début"
                        )
                        data_year_end = gr.Slider(
                            minimum=2014, 
                            maximum=2025, 
                            value=2025, 
                            step=1, 
                            label="Année de fin"
                        )
                        data_plot_filter = gr.Dropdown(
                            choices=get_available_plots(), 
                            value="Toutes", 
                            label="Filtrer par parcelle"
                        )
                        data_crop_filter = gr.Dropdown(
                            choices=get_available_crops(), 
                            value="Toutes", 
                            label="Filtrer par culture"
                        )
                        data_intervention_filter = gr.Dropdown(
                            choices=get_available_interventions(), 
                            value="Toutes", 
                            label="Filtrer par type d'intervention"
                        )
                        explore_btn = gr.Button("🔍 Explorer les Données", variant="primary")
                
                with gr.Row():
                    data_plot = gr.Plot()
                    data_summary = gr.Markdown()
                
                explore_btn.click(
                    explore_raw_data, 
                    inputs=[data_year_start, data_year_end, data_plot_filter, data_crop_filter, data_intervention_filter], 
                    outputs=[data_plot, data_summary]
                )
            
    
    return demo