mcp / hf_integration.py
Tracy André
updated
7ca901a
raw
history blame
9.86 kB
"""
Hugging Face integration for dataset management and model deployment.
"""
import os
import pandas as pd
from datasets import Dataset, DatasetDict
from huggingface_hub import HfApi, create_repo, upload_file
from pathlib import Path
from typing import Optional, Dict, Any
import json
class HuggingFaceIntegration:
"""Handles Hugging Face dataset and model operations."""
def __init__(self, token: Optional[str] = None, dataset_id: str = "HackathonCRA/2024"):
self.token = token or os.environ.get("HF_TOKEN")
self.dataset_id = dataset_id
self.api = HfApi(token=self.token) if self.token else None
def prepare_dataset_from_local_files(self, data_path: str) -> Dataset:
"""Prepare dataset from local CSV/Excel files."""
from data_loader import AgriculturalDataLoader
# Load and combine all data files
loader = AgriculturalDataLoader(data_path=data_path)
df = loader.load_all_files()
# Convert to Hugging Face Dataset
dataset = Dataset.from_pandas(df)
return dataset
def upload_dataset(self, data_path: str, private: bool = False) -> str:
"""Upload agricultural data to Hugging Face Hub."""
if not self.token:
raise ValueError("HF_TOKEN required for uploading")
# Prepare dataset
dataset = self.prepare_dataset_from_local_files(data_path)
# Create repository if it doesn't exist
try:
create_repo(
repo_id=self.dataset_id,
token=self.token,
repo_type="dataset",
private=private,
exist_ok=True
)
except Exception as e:
print(f"Repository might already exist: {e}")
# Upload dataset
dataset.push_to_hub(
repo_id=self.dataset_id,
token=self.token,
private=private
)
return f"Dataset uploaded to https://huggingface.co/datasets/{self.dataset_id}"
def create_dataset_card(self) -> str:
"""Create a dataset card for the agricultural data."""
card_content = """
---
license: cc-by-4.0
task_categories:
- tabular-regression
- time-series-forecasting
language:
- fr
tags:
- agriculture
- herbicides
- weed-pressure
- crop-rotation
- france
- bretagne
size_categories:
- 1K<n<10K
---
# 🚜 Station Expérimentale de Kerguéhennec - Agricultural Interventions Dataset
## Dataset Description
This dataset contains agricultural intervention records from the Station Expérimentale de Kerguéhennec in Brittany, France, spanning from 2014 to 2024. The data includes detailed information about agricultural practices, crop rotations, herbicide treatments, and field management operations.
## Dataset Summary
- **Source**: Station Expérimentale de Kerguéhennec
- **Time Period**: 2014-2024
- **Location**: Brittany, France
- **Records**: ~10,000+ intervention records
- **Format**: CSV/Excel exports from farm management system
## Use Cases
This dataset is particularly valuable for:
1. **Weed Pressure Analysis**: Calculate and predict Treatment Frequency Index (IFT) for herbicides
2. **Crop Rotation Optimization**: Analyze the impact of different crop sequences on pest pressure
3. **Sustainable Agriculture**: Support reduction of herbicide use while maintaining productivity
4. **Precision Agriculture**: Identify suitable plots for sensitive crops (peas, beans)
5. **Agricultural Research**: Study relationships between practices and outcomes
## Data Fields
### Core Fields
- `millesime`: Year of intervention
- `nomparc`: Plot/field name
- `surfparc`: Plot surface area (hectares)
- `libelleusag`: Crop type/usage
- `datedebut`/`datefin`: Intervention start/end dates
- `libevenem`: Intervention type
- `familleprod`: Product family (herbicides, fungicides, etc.)
- `produit`: Specific product used
- `quantitetot`: Total quantity applied
- `unite`: Unit of measurement
### Derived Fields
- `year`: Intervention year
- `crop_type`: Standardized crop classification
- `is_herbicide`: Boolean flag for herbicide treatments
- `ift_herbicide`: Treatment Frequency Index calculation
## Data Quality
- All personal identifying information has been removed
- Geographic coordinates are generalized to protect farm location
- Product codes (AMM) are preserved for regulatory analysis
- Missing values are clearly marked and documented
## Methodology
### IFT Calculation
The Treatment Frequency Index (IFT) is calculated as:
```
IFT = Number of applications / Plot surface area
```
This metric is crucial for:
- Regulatory compliance monitoring
- Sustainable practice assessment
- Risk evaluation for sensitive crops
## Applications
### 1. Weed Pressure Prediction
Use machine learning models to predict future IFT values based on:
- Historical treatment patterns
- Crop rotation sequences
- Environmental factors
- Plot characteristics
### 2. Sustainable Plot Selection
Identify plots suitable for sensitive crops (peas, beans) by:
- Analyzing historical IFT trends
- Evaluating rotation impacts
- Assessing risk levels
### 3. Alternative Strategy Development
Support herbicide reduction strategies through:
- Product usage pattern analysis
- Rotation optimization recommendations
- Risk assessment frameworks
## Citation
If you use this dataset in your research, please cite:
```
@dataset{hackathon_cra_2024,
title={Station Expérimentale de Kerguéhennec Agricultural Interventions Dataset},
author={Hackathon CRA Team},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/datasets/HackathonCRA/2024}
}
```
## License
This dataset is released under CC-BY-4.0 license, allowing for both commercial and research use with proper attribution.
## Contact
For questions about this dataset or collaboration opportunities, please contact the research team through the Hugging Face dataset page.
---
**Keywords**: agriculture, herbicides, crop rotation, sustainable farming, France, Brittany, IFT, weed management, precision agriculture
"""
return card_content
def upload_app_space(self, local_app_path: str, space_name: str = "agricultural-analysis") -> str:
"""Upload the Gradio app as a Hugging Face Space."""
if not self.token:
raise ValueError("HF_TOKEN required for uploading")
repo_id = f"{self.api.whoami()['name']}/{space_name}"
# Create Space repository
try:
create_repo(
repo_id=repo_id,
token=self.token,
repo_type="space",
space_sdk="gradio",
private=False,
exist_ok=True
)
except Exception as e:
print(f"Space might already exist: {e}")
# Upload files
app_files = [
"app.py",
"requirements.txt",
"gradio_app.py",
"data_loader.py",
"analysis_tools.py",
"mcp_server.py",
"README.md"
]
for file_name in app_files:
file_path = Path(local_app_path) / file_name
if file_path.exists():
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=file_name,
repo_id=repo_id,
repo_type="space",
token=self.token
)
print(f"Uploaded {file_name}")
return f"Space created at https://huggingface.co/spaces/{repo_id}"
def create_space_readme(self) -> str:
"""Create README for Hugging Face Space."""
readme_content = """
---
title: Agricultural Analysis - Kerguéhennec
emoji: 🚜
colorFrom: green
colorTo: blue
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
license: cc-by-4.0
---
# 🚜 Agricultural Analysis - Station de Kerguéhennec
Outil d'analyse des données agricoles pour l'optimisation des pratiques phytosanitaires et l'identification des parcelles adaptées aux cultures sensibles.
## Fonctionnalités
- 📊 Analyse des données d'interventions agricoles
- 🌿 Évaluation de la pression adventices (IFT)
- 🔮 Prédictions pour les 3 prochaines années
- 🔄 Analyse de l'impact des rotations culturales
- 💊 Étude des herbicides utilisés
- 🎯 Identification des parcelles pour cultures sensibles
## Utilisation
1. Sélectionnez l'onglet correspondant à votre analyse
2. Configurez les filtres selon vos besoins
3. Lancez l'analyse pour obtenir les résultats
4. Explorez les visualisations interactives
## Données
Basé sur les données de la Station Expérimentale de Kerguéhennec (2014-2024).
"""
return readme_content
def setup_environment_variables(self) -> Dict[str, str]:
"""Setup environment variables for Hugging Face deployment."""
env_vars = {
"HF_TOKEN": self.token or "your_hf_token_here",
"DATASET_ID": self.dataset_id,
"GRADIO_SERVER_NAME": "0.0.0.0",
"GRADIO_SERVER_PORT": "7860"
}
return env_vars
# Usage example
if __name__ == "__main__":
# Initialize HF integration
hf = HuggingFaceIntegration()
# Upload dataset (requires HF_TOKEN)
if hf.token:
try:
result = hf.upload_dataset("/Users/tracyandre/Downloads/OneDrive_1_9-17-2025")
print(result)
except Exception as e:
print(f"Dataset upload failed: {e}")
# Create dataset card
card = hf.create_dataset_card()
print("Dataset card created")
# Show environment setup
env_vars = hf.setup_environment_variables()
print("Environment variables:", env_vars)