mcp / mcp_server.py
Tracy André
updated
5ddad7c
raw
history blame
14.6 kB
"""MCP Server for Agricultural Weed Pressure Analysis"""
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
from data_loader import AgriculturalDataLoader
import warnings
warnings.filterwarnings('ignore')
class WeedPressureAnalyzer:
"""Analyze weed pressure and recommend plots for sensitive crops."""
def __init__(self):
self.data_loader = AgriculturalDataLoader()
self.data_cache = None
def load_data(self):
if self.data_cache is None:
self.data_cache = self.data_loader.load_all_files()
return self.data_cache
def calculate_herbicide_ift(self, years=None):
"""Calculate IFT for herbicides by plot and year."""
df = self.load_data()
if years:
df = df[df['year'].isin(years)]
herbicide_df = df[df['is_herbicide'] == True].copy()
if len(herbicide_df) == 0:
return pd.DataFrame()
ift_summary = herbicide_df.groupby(['plot_name', 'year', 'crop_type']).agg({
'produit': 'count',
'plot_surface': 'first',
'quantitetot': 'sum'
}).reset_index()
ift_summary['ift_herbicide'] = ift_summary['produit'] / ift_summary['plot_surface']
return ift_summary
def predict_weed_pressure(self, target_years=[2025, 2026, 2027]):
"""Predict weed pressure for future years."""
ift_data = self.calculate_herbicide_ift()
if len(ift_data) == 0:
return pd.DataFrame()
predictions = []
for plot in ift_data['plot_name'].unique():
plot_data = ift_data[ift_data['plot_name'] == plot].sort_values('year')
if len(plot_data) < 2:
continue
years = plot_data['year'].values
ift_values = plot_data['ift_herbicide'].values
if len(years) > 1:
slope = np.polyfit(years, ift_values, 1)[0]
intercept = np.polyfit(years, ift_values, 1)[1]
for target_year in target_years:
predicted_ift = slope * target_year + intercept
predicted_ift = max(0, predicted_ift)
if predicted_ift < 1.0:
risk_level = "Faible"
elif predicted_ift < 2.0:
risk_level = "Modéré"
else:
risk_level = "Élevé"
predictions.append({
'plot_name': plot,
'year': target_year,
'predicted_ift': predicted_ift,
'risk_level': risk_level,
'recent_crops': ', '.join(plot_data['crop_type'].tail(3).unique()),
'historical_avg_ift': plot_data['ift_herbicide'].mean()
})
return pd.DataFrame(predictions)
# Initialize analyzer
analyzer = WeedPressureAnalyzer()
def analyze_herbicide_trends(year_start, year_end, plot_filter):
"""Analyze herbicide usage trends over time."""
try:
# Créer la liste des années à partir des deux sliders
start_year = int(year_start)
end_year = int(year_end)
# S'assurer que start <= end
if start_year > end_year:
start_year, end_year = end_year, start_year
years = list(range(start_year, end_year + 1))
ift_data = analyzer.calculate_herbicide_ift(years=years)
if len(ift_data) == 0:
return None, "Aucune donnée d'herbicides trouvée pour la période sélectionnée."
# Filtrage par parcelle si nécessaire
if plot_filter and plot_filter != "Toutes":
ift_data = ift_data[ift_data['plot_name'] == plot_filter]
if len(ift_data) == 0:
return None, f"Aucune donnée trouvée pour la parcelle '{plot_filter}' sur la période {years[0]}-{years[-1]}."
# Création du graphique
fig = px.line(ift_data,
x='year',
y='ift_herbicide',
color='plot_name',
title=f'Évolution de l\'IFT Herbicides ({years[0]}-{years[-1]})',
labels={'ift_herbicide': 'IFT Herbicides', 'year': 'Année'},
markers=True)
fig.update_layout(
height=500,
xaxis_title="Année",
yaxis_title="IFT Herbicides",
legend_title="Parcelle"
)
# Ajout d'une ligne de référence IFT = 2.0
fig.add_hline(y=2.0, line_dash="dash", line_color="red",
annotation_text="Seuil IFT élevé (2.0)", annotation_position="top right")
fig.add_hline(y=1.0, line_dash="dash", line_color="orange",
annotation_text="Seuil IFT modéré (1.0)", annotation_position="bottom right")
# Calcul des statistiques
ift_mean = ift_data['ift_herbicide'].mean()
ift_max = ift_data['ift_herbicide'].max()
ift_min = ift_data['ift_herbicide'].min()
n_plots = ift_data['plot_name'].nunique()
n_records = len(ift_data)
# Classification des niveaux de risque
low_risk = len(ift_data[ift_data['ift_herbicide'] < 1.0])
moderate_risk = len(ift_data[(ift_data['ift_herbicide'] >= 1.0) & (ift_data['ift_herbicide'] < 2.0)])
high_risk = len(ift_data[ift_data['ift_herbicide'] >= 2.0])
summary = f"""
📊 **Analyse de l'IFT Herbicides ({years[0]}-{years[-1]})**
**Période analysée:** {years[0]} à {years[-1]}
**Parcelle(s):** {plot_filter if plot_filter != "Toutes" else "Toutes les parcelles"}
**Statistiques globales:**
- IFT moyen: {ift_mean:.2f}
- IFT minimum: {ift_min:.2f}
- IFT maximum: {ift_max:.2f}
- Nombre de parcelles: {n_plots}
- Nombre d'observations: {n_records}
**Répartition des niveaux de pression:**
- 🟢 Faible (IFT < 1.0): {low_risk} observations ({low_risk/n_records*100:.1f}%)
- 🟡 Modérée (1.0 ≤ IFT < 2.0): {moderate_risk} observations ({moderate_risk/n_records*100:.1f}%)
- 🔴 Élevée (IFT ≥ 2.0): {high_risk} observations ({high_risk/n_records*100:.1f}%)
**Interprétation:**
- IFT < 1.0: Pression adventices faible ✅
- 1.0 ≤ IFT < 2.0: Pression adventices modérée ⚠️
- IFT ≥ 2.0: Pression adventices élevée ❌
"""
return fig, summary
except Exception as e:
import traceback
error_msg = f"Erreur dans l'analyse: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return None, error_msg
def predict_future_weed_pressure():
"""Predict weed pressure for the next 3 years."""
try:
predictions = analyzer.predict_weed_pressure()
if len(predictions) == 0:
return None, "Impossible de générer des prédictions."
fig = px.bar(predictions,
x='plot_name',
y='predicted_ift',
color='risk_level',
facet_col='year',
title='Prédiction Pression Adventices (2025-2027)',
color_discrete_map={'Faible': 'green', 'Modéré': 'orange', 'Élevé': 'red'})
low_risk = len(predictions[predictions['risk_level'] == 'Faible'])
moderate_risk = len(predictions[predictions['risk_level'] == 'Modéré'])
high_risk = len(predictions[predictions['risk_level'] == 'Élevé'])
summary = f"""
🔮 **Prédictions 2025-2027**
**Répartition des risques:**
- ✅ Risque faible: {low_risk} prédictions
- ⚠️ Risque modéré: {moderate_risk} prédictions
- ❌ Risque élevé: {high_risk} prédictions
"""
return fig, summary
except Exception as e:
return None, f"Erreur: {str(e)}"
def recommend_sensitive_crop_plots():
"""Recommend plots for sensitive crops."""
try:
predictions = analyzer.predict_weed_pressure()
if len(predictions) == 0:
return None, "Aucune recommandation disponible."
suitable_plots = predictions[predictions['risk_level'] == "Faible"].copy()
if len(suitable_plots) > 0:
suitable_plots['recommendation_score'] = 100 - (suitable_plots['predicted_ift'] * 30)
suitable_plots = suitable_plots.sort_values('recommendation_score', ascending=False)
top_recommendations = suitable_plots.head(10)[['plot_name', 'year', 'predicted_ift', 'recommendation_score']]
summary = f"""
🌱 **Recommandations Cultures Sensibles**
**Top parcelles recommandées:**
{top_recommendations.to_string(index=False)}
**Critères:** IFT prédit < 1.0 (faible pression adventices)
"""
fig = px.scatter(suitable_plots,
x='predicted_ift',
y='recommendation_score',
color='year',
hover_data=['plot_name'],
title='Parcelles Recommandées pour Cultures Sensibles')
return fig, summary
else:
return None, "Aucune parcelle à faible risque identifiée."
except Exception as e:
return None, f"Erreur: {str(e)}"
def generate_technical_alternatives(herbicide_family):
"""Generate technical alternatives."""
summary = f"""
🔄 **Alternatives aux {herbicide_family}**
**🚜 Alternatives Mécaniques:**
• Faux-semis répétés avant implantation
• Binage mécanique en inter-rang
• Herse étrille en post-levée précoce
**🌾 Alternatives Culturales:**
• Rotation longue avec prairie temporaire
• Cultures intermédiaires piège à nitrates
• Densité de semis optimisée
**🧪 Alternatives Biologiques:**
• Stimulateurs de défenses naturelles
• Extraits végétaux (huiles essentielles)
• Bioherbicides à base de champignons
**📋 Plan d'Action:**
1. Tester sur petites surfaces
2. Former les équipes
3. Suivre l'efficacité
4. Documenter les résultats
"""
return summary
def get_available_plots():
"""Get available plots."""
try:
df = analyzer.load_data()
plots = sorted(df['plot_name'].dropna().unique().tolist())
return ["Toutes"] + plots
except Exception as e:
print(f"Erreur lors du chargement des parcelles: {e}")
return ["Toutes", "Champ ferme Bas", "Etang Milieu", "Lann Chebot"]
# Create Gradio Interface
def create_mcp_interface():
with gr.Blocks(title="🚜 Analyse Pression Adventices", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🚜 Analyse Pression Adventices - CRA Bretagne
Anticiper et réduire la pression des adventices pour optimiser les cultures sensibles (pois, haricot).
""")
with gr.Tabs():
with gr.Tab("📈 Analyse Tendances"):
gr.Markdown("### Analyser l'évolution de l'IFT herbicides par parcelle et période")
with gr.Row():
with gr.Column():
with gr.Row():
year_start = gr.Slider(
minimum=2014,
maximum=2025,
value=2020,
step=1,
label="Année de début"
)
year_end = gr.Slider(
minimum=2014,
maximum=2025,
value=2025,
step=1,
label="Année de fin"
)
plot_dropdown = gr.Dropdown(
choices=get_available_plots(),
value="Toutes",
label="Filtrer par parcelle",
info="Choisissez une parcelle spécifique ou toutes"
)
analyze_btn = gr.Button("🔍 Analyser les Tendances", variant="primary", size="lg")
with gr.Row():
with gr.Column(scale=2):
trends_plot = gr.Plot(label="Graphique d'évolution")
with gr.Column(scale=1):
trends_summary = gr.Markdown(label="Résumé statistique")
analyze_btn.click(
analyze_herbicide_trends,
inputs=[year_start, year_end, plot_dropdown],
outputs=[trends_plot, trends_summary]
)
with gr.Tab("🔮 Prédictions"):
predict_btn = gr.Button("🎯 Prédire 2025-2027", variant="primary")
with gr.Row():
predictions_plot = gr.Plot()
predictions_summary = gr.Markdown()
predict_btn.click(predict_future_weed_pressure, outputs=[predictions_plot, predictions_summary])
with gr.Tab("🌱 Recommandations"):
recommend_btn = gr.Button("🎯 Recommander Parcelles", variant="primary")
with gr.Row():
recommendations_plot = gr.Plot()
recommendations_summary = gr.Markdown()
recommend_btn.click(recommend_sensitive_crop_plots, outputs=[recommendations_plot, recommendations_summary])
with gr.Tab("🔄 Alternatives"):
herbicide_type = gr.Dropdown(["Herbicides", "Fongicides"], value="Herbicides", label="Type")
alternatives_btn = gr.Button("💡 Générer Alternatives", variant="primary")
alternatives_output = gr.Markdown()
alternatives_btn.click(generate_technical_alternatives, [herbicide_type], [alternatives_output])
return demo
if __name__ == "__main__":
demo = create_mcp_interface()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)