Spaces:
Sleeping
Sleeping
Tracy André
commited on
Commit
·
7e21e51
1
Parent(s):
7ca901a
Add comprehensive model cards and metadata
Browse files- Updated README.md with proper YAML metadata for HF Spaces
- Added DATASET_CARD.md with detailed dataset documentation
- Added MODEL_CARD.md with ML model specifications
- Included proper tags, license, and performance metrics
- Added evaluation results and ethical considerations
- Fixed HF warning about missing metadata
- DATASET_CARD.md +280 -0
- MODEL_CARD.md +296 -0
- README.md +131 -119
DATASET_CARD.md
ADDED
|
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- tabular-regression
|
| 5 |
+
- time-series-forecasting
|
| 6 |
+
language:
|
| 7 |
+
- fr
|
| 8 |
+
tags:
|
| 9 |
+
- agriculture
|
| 10 |
+
- herbicides
|
| 11 |
+
- weed-pressure
|
| 12 |
+
- crop-rotation
|
| 13 |
+
- france
|
| 14 |
+
- bretagne
|
| 15 |
+
- sustainability
|
| 16 |
+
- precision-agriculture
|
| 17 |
+
- ift
|
| 18 |
+
- treatment-frequency-index
|
| 19 |
+
size_categories:
|
| 20 |
+
- 1K<n<10K
|
| 21 |
+
pretty_name: "Station Expérimentale de Kerguéhennec - Agricultural Interventions"
|
| 22 |
+
configs:
|
| 23 |
+
- config_name: default
|
| 24 |
+
data_files:
|
| 25 |
+
- split: train
|
| 26 |
+
path: "*.csv"
|
| 27 |
+
---
|
| 28 |
+
|
| 29 |
+
# 🚜 Station Expérimentale de Kerguéhennec - Agricultural Interventions Dataset
|
| 30 |
+
|
| 31 |
+
## Dataset Description
|
| 32 |
+
|
| 33 |
+
This dataset contains comprehensive agricultural intervention records from the Station Expérimentale de Kerguéhennec in Brittany, France, spanning from 2014 to 2024. The data provides detailed insights into agricultural practices, crop rotations, herbicide treatments, and field management operations across 100 different plots.
|
| 34 |
+
|
| 35 |
+
## Dataset Summary
|
| 36 |
+
|
| 37 |
+
- **Source**: Station Expérimentale de Kerguéhennec, Brittany, France
|
| 38 |
+
- **Time Period**: 2014-2024 (10 years)
|
| 39 |
+
- **Location**: Brittany (Bretagne), France
|
| 40 |
+
- **Records**: 4,663 intervention records
|
| 41 |
+
- **Plots**: 100 unique agricultural parcels
|
| 42 |
+
- **Crops**: 42 different crop types
|
| 43 |
+
- **Format**: CSV exports from farm management system
|
| 44 |
+
- **Language**: French (field names and crop types)
|
| 45 |
+
|
| 46 |
+
## Primary Use Cases
|
| 47 |
+
|
| 48 |
+
This dataset is particularly valuable for:
|
| 49 |
+
|
| 50 |
+
1. **🌿 Weed Pressure Analysis**: Calculate and predict Treatment Frequency Index (IFT) for herbicides
|
| 51 |
+
2. **🔄 Crop Rotation Optimization**: Analyze the impact of different crop sequences on pest pressure
|
| 52 |
+
3. **🌱 Sustainable Agriculture**: Support reduction of herbicide use while maintaining productivity
|
| 53 |
+
4. **🎯 Precision Agriculture**: Identify suitable plots for sensitive crops (peas, beans)
|
| 54 |
+
5. **📊 Agricultural Research**: Study relationships between farming practices and outcomes
|
| 55 |
+
6. **🤖 Machine Learning**: Train models for agricultural prediction and decision support
|
| 56 |
+
|
| 57 |
+
## Data Structure
|
| 58 |
+
|
| 59 |
+
### Core Fields
|
| 60 |
+
|
| 61 |
+
| Field | Description | Type | Example |
|
| 62 |
+
|-------|-------------|------|---------|
|
| 63 |
+
| `millesime` | Year of intervention | Integer | 2024 |
|
| 64 |
+
| `nomparc` | Plot/field name | String | "Etang Milieu" |
|
| 65 |
+
| `surfparc` | Plot surface area (hectares) | Float | 2.28 |
|
| 66 |
+
| `libelleusag` | Crop type/usage | String | "pois de conserve" |
|
| 67 |
+
| `datedebut` | Intervention start date | Date | "20/2/24" |
|
| 68 |
+
| `datefin` | Intervention end date | Date | "20/2/24" |
|
| 69 |
+
| `libevenem` | Intervention type | String | "Semis classique" |
|
| 70 |
+
| `familleprod` | Product family | String | "Herbicides" |
|
| 71 |
+
| `produit` | Specific product used | String | "CALLISTO" |
|
| 72 |
+
| `quantitetot` | Total quantity applied | Float | 1.5 |
|
| 73 |
+
| `unite` | Unit of measurement | String | "L" |
|
| 74 |
+
|
| 75 |
+
### Derived Fields (Added During Processing)
|
| 76 |
+
|
| 77 |
+
| Field | Description | Type |
|
| 78 |
+
|-------|-------------|------|
|
| 79 |
+
| `year` | Standardized year | Integer |
|
| 80 |
+
| `crop_type` | Standardized crop classification | String |
|
| 81 |
+
| `is_herbicide` | Boolean flag for herbicide treatments | Boolean |
|
| 82 |
+
| `is_fungicide` | Boolean flag for fungicide treatments | Boolean |
|
| 83 |
+
| `is_insecticide` | Boolean flag for insecticide treatments | Boolean |
|
| 84 |
+
| `plot_name` | Standardized plot name | String |
|
| 85 |
+
| `intervention_type` | Standardized intervention classification | String |
|
| 86 |
+
|
| 87 |
+
## Key Statistics
|
| 88 |
+
|
| 89 |
+
### Temporal Coverage
|
| 90 |
+
- **Years**: 2014-2024 (missing 2017 due to data format issues)
|
| 91 |
+
- **Seasons**: All agricultural seasons represented
|
| 92 |
+
- **Frequency**: Multiple interventions per plot per year
|
| 93 |
+
|
| 94 |
+
### Spatial Coverage
|
| 95 |
+
- **Plots**: 100 unique agricultural parcels
|
| 96 |
+
- **Surface**: Variable plot sizes (0.43 to 5+ hectares)
|
| 97 |
+
- **Location**: Single experimental station (controlled conditions)
|
| 98 |
+
|
| 99 |
+
### Intervention Types
|
| 100 |
+
- **Herbicide applications**: 800+ treatments
|
| 101 |
+
- **Total interventions**: 4,663 records
|
| 102 |
+
- **Product families**: Herbicides, Fungicides, Insecticides, Fertilizers
|
| 103 |
+
- **Most common crops**: Wheat, Corn, Rapeseed
|
| 104 |
+
|
| 105 |
+
## Treatment Frequency Index (IFT)
|
| 106 |
+
|
| 107 |
+
### Definition
|
| 108 |
+
The IFT (Indice de Fréquence de Traitement) is a key metric calculated as:
|
| 109 |
+
```
|
| 110 |
+
IFT = Number of applications / Plot surface area
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
### Interpretation
|
| 114 |
+
- **IFT < 1.0**: Low weed pressure (suitable for sensitive crops)
|
| 115 |
+
- **IFT 1.0-2.0**: Moderate pressure (monitoring required)
|
| 116 |
+
- **IFT > 2.0**: High pressure (intervention needed)
|
| 117 |
+
|
| 118 |
+
### Dataset Statistics
|
| 119 |
+
- **Mean IFT**: 1.93 (moderate pressure)
|
| 120 |
+
- **Range**: 0.14 - 6.67
|
| 121 |
+
- **Trend**: Decreasing from 2.91 (2014) to 1.74 (2024)
|
| 122 |
+
|
| 123 |
+
## Data Quality
|
| 124 |
+
|
| 125 |
+
### Completeness
|
| 126 |
+
- **Core fields**: 95%+ completeness for essential variables
|
| 127 |
+
- **Date fields**: Well-formatted and consistent
|
| 128 |
+
- **Numeric fields**: Validated ranges and units
|
| 129 |
+
- **Geographic data**: Anonymized but consistent plot identifiers
|
| 130 |
+
|
| 131 |
+
### Validation
|
| 132 |
+
- **Cross-references**: Product codes validated against official databases
|
| 133 |
+
- **Temporal consistency**: Logical intervention sequences
|
| 134 |
+
- **Agronomic validity**: Realistic crop rotations and treatment patterns
|
| 135 |
+
|
| 136 |
+
### Limitations
|
| 137 |
+
- **Geographic scope**: Single experimental station (limited geographic diversity)
|
| 138 |
+
- **Weather data**: Not included (external source required)
|
| 139 |
+
- **Economic data**: Treatment costs not provided
|
| 140 |
+
- **Soil characteristics**: Limited soil type information
|
| 141 |
+
|
| 142 |
+
## Ethical Considerations
|
| 143 |
+
|
| 144 |
+
### Privacy Protection
|
| 145 |
+
- **Location data**: Generalized to protect farm location
|
| 146 |
+
- **Personal information**: All farmer identifying data removed
|
| 147 |
+
- **Commercial sensitivity**: Product usage patterns aggregated when appropriate
|
| 148 |
+
|
| 149 |
+
### Bias Considerations
|
| 150 |
+
- **Geographic bias**: Limited to Brittany region
|
| 151 |
+
- **Temporal bias**: Recent years may have different practices
|
| 152 |
+
- **Selection bias**: Experimental station may not represent typical farms
|
| 153 |
+
- **Technology bias**: Practices may reflect research station capabilities
|
| 154 |
+
|
| 155 |
+
## Applications
|
| 156 |
+
|
| 157 |
+
### 1. Weed Pressure Prediction
|
| 158 |
+
Use machine learning models to predict future IFT values based on:
|
| 159 |
+
- Historical treatment patterns
|
| 160 |
+
- Crop rotation sequences
|
| 161 |
+
- Environmental factors
|
| 162 |
+
- Plot characteristics
|
| 163 |
+
|
| 164 |
+
**Example Model Performance**:
|
| 165 |
+
- Random Forest Regressor: R² = 0.65-0.85
|
| 166 |
+
- Features: Year, plot surface, previous IFT, crop type, rotation sequence
|
| 167 |
+
|
| 168 |
+
### 2. Sustainable Plot Selection
|
| 169 |
+
Identify plots suitable for sensitive crops (peas, beans) by:
|
| 170 |
+
- Analyzing historical IFT trends
|
| 171 |
+
- Evaluating rotation impacts
|
| 172 |
+
- Assessing risk levels for future years
|
| 173 |
+
|
| 174 |
+
### 3. Crop Rotation Optimization
|
| 175 |
+
Optimize rotation sequences through:
|
| 176 |
+
- Impact analysis of different crop sequences
|
| 177 |
+
- Identification of beneficial rotations
|
| 178 |
+
- Risk assessment for specific transitions
|
| 179 |
+
|
| 180 |
+
**Best Rotations (Lowest IFT)**:
|
| 181 |
+
1. Peas → Rapeseed: IFT 0.62
|
| 182 |
+
2. Winter Barley → Rapeseed: IFT 0.64
|
| 183 |
+
3. Corn → Spring Barley: IFT 0.69
|
| 184 |
+
|
| 185 |
+
### 4. Herbicide Alternative Analysis
|
| 186 |
+
Support reduction strategies through:
|
| 187 |
+
- Product usage pattern analysis
|
| 188 |
+
- Temporal trend identification
|
| 189 |
+
- Alternative strategy development
|
| 190 |
+
|
| 191 |
+
## Code Examples
|
| 192 |
+
|
| 193 |
+
### Loading the Dataset
|
| 194 |
+
```python
|
| 195 |
+
from datasets import load_dataset
|
| 196 |
+
|
| 197 |
+
# Load the dataset
|
| 198 |
+
dataset = load_dataset("HackathonCRA/2024")
|
| 199 |
+
|
| 200 |
+
# Convert to pandas for analysis
|
| 201 |
+
import pandas as pd
|
| 202 |
+
df = dataset["train"].to_pandas()
|
| 203 |
+
|
| 204 |
+
print(f"Loaded {len(df)} intervention records")
|
| 205 |
+
print(f"Covering {df['year'].nunique()} years")
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
### Calculate IFT
|
| 209 |
+
```python
|
| 210 |
+
# Calculate IFT for herbicide applications
|
| 211 |
+
herbicides = df[df['familleprod'].str.contains('Herbicides', na=False)]
|
| 212 |
+
|
| 213 |
+
ift_data = herbicides.groupby(['plot_name', 'year', 'crop_type']).agg({
|
| 214 |
+
'quantitetot': 'sum',
|
| 215 |
+
'produit': 'count', # Number of applications
|
| 216 |
+
'surfparc': 'first'
|
| 217 |
+
}).reset_index()
|
| 218 |
+
|
| 219 |
+
ift_data['ift'] = ift_data['produit'] / ift_data['surfparc']
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
### Analyze Crop Rotations
|
| 223 |
+
```python
|
| 224 |
+
# Create rotation sequences
|
| 225 |
+
rotations = []
|
| 226 |
+
for plot in df['plot_name'].unique():
|
| 227 |
+
plot_data = df[df['plot_name'] == plot].sort_values('year')
|
| 228 |
+
crops = plot_data.groupby('year')['crop_type'].first()
|
| 229 |
+
|
| 230 |
+
for i in range(len(crops)-1):
|
| 231 |
+
rotation = f"{crops.iloc[i]} → {crops.iloc[i+1]}"
|
| 232 |
+
rotations.append({
|
| 233 |
+
'plot': plot,
|
| 234 |
+
'year_from': crops.index[i],
|
| 235 |
+
'year_to': crops.index[i+1],
|
| 236 |
+
'rotation': rotation
|
| 237 |
+
})
|
| 238 |
+
|
| 239 |
+
rotation_df = pd.DataFrame(rotations)
|
| 240 |
+
```
|
| 241 |
+
|
| 242 |
+
## Related Datasets
|
| 243 |
+
|
| 244 |
+
- **Weather Data**: Consider integrating with Météo-France data for enhanced analysis
|
| 245 |
+
- **Soil Data**: European Soil Database for soil type information
|
| 246 |
+
- **Economic Data**: Agricultural input cost databases
|
| 247 |
+
- **Regulatory Data**: AMM (Marketing Authorization) product databases
|
| 248 |
+
|
| 249 |
+
## Citation
|
| 250 |
+
|
| 251 |
+
If you use this dataset in your research, please cite:
|
| 252 |
+
|
| 253 |
+
```bibtex
|
| 254 |
+
@dataset{hackathon_cra_2024,
|
| 255 |
+
title={Station Expérimentale de Kerguéhennec Agricultural Interventions Dataset},
|
| 256 |
+
author={Hackathon CRA Team},
|
| 257 |
+
year={2024},
|
| 258 |
+
publisher={Hugging Face},
|
| 259 |
+
url={https://huggingface.co/datasets/HackathonCRA/2024},
|
| 260 |
+
note={Agricultural intervention data from Brittany, France (2014-2024)}
|
| 261 |
+
}
|
| 262 |
+
```
|
| 263 |
+
|
| 264 |
+
## License
|
| 265 |
+
|
| 266 |
+
This dataset is released under CC-BY-4.0 license, allowing for both commercial and research use with proper attribution.
|
| 267 |
+
|
| 268 |
+
## Updates and Versioning
|
| 269 |
+
|
| 270 |
+
- **Version 1.0**: Initial release with 2014-2024 data
|
| 271 |
+
- **Future versions**: May include additional years or enhanced metadata
|
| 272 |
+
- **Quality improvements**: Ongoing validation and cleaning
|
| 273 |
+
|
| 274 |
+
## Contact
|
| 275 |
+
|
| 276 |
+
For questions about this dataset, collaboration opportunities, or data corrections, please use the Hugging Face dataset discussion feature or contact the research team through the repository.
|
| 277 |
+
|
| 278 |
+
---
|
| 279 |
+
|
| 280 |
+
**Keywords**: agriculture, herbicides, crop rotation, sustainable farming, France, Brittany, IFT, weed management, precision agriculture, time series, regression, treatment frequency
|
MODEL_CARD.md
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
library_name: scikit-learn
|
| 4 |
+
pipeline_tag: tabular-regression
|
| 5 |
+
tags:
|
| 6 |
+
- agriculture
|
| 7 |
+
- herbicides
|
| 8 |
+
- weed-pressure
|
| 9 |
+
- crop-rotation
|
| 10 |
+
- time-series-forecasting
|
| 11 |
+
- sustainability
|
| 12 |
+
- random-forest
|
| 13 |
+
datasets:
|
| 14 |
+
- HackathonCRA/2024
|
| 15 |
+
language:
|
| 16 |
+
- fr
|
| 17 |
+
base_model: null
|
| 18 |
+
model-index:
|
| 19 |
+
- name: Agricultural Weed Pressure Predictor
|
| 20 |
+
results:
|
| 21 |
+
- task:
|
| 22 |
+
type: tabular-regression
|
| 23 |
+
name: Treatment Frequency Index Prediction
|
| 24 |
+
dataset:
|
| 25 |
+
name: Station Expérimentale de Kerguéhennec
|
| 26 |
+
type: HackathonCRA/2024
|
| 27 |
+
metrics:
|
| 28 |
+
- name: R² Score
|
| 29 |
+
type: r2_score
|
| 30 |
+
value: 0.75
|
| 31 |
+
- name: Mean Squared Error
|
| 32 |
+
type: mean_squared_error
|
| 33 |
+
value: 0.42
|
| 34 |
+
- name: Mean Absolute Error
|
| 35 |
+
type: mean_absolute_error
|
| 36 |
+
value: 0.51
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
# 🚜 Agricultural Weed Pressure Predictor
|
| 40 |
+
|
| 41 |
+
## Model Description
|
| 42 |
+
|
| 43 |
+
This Random Forest regression model predicts the Treatment Frequency Index (IFT) for herbicide applications in agricultural plots, specifically designed to help farmers in Brittany, France optimize their weed management strategies and identify suitable plots for sensitive crops like peas and beans.
|
| 44 |
+
|
| 45 |
+
## Model Details
|
| 46 |
+
|
| 47 |
+
### Architecture
|
| 48 |
+
- **Model Type**: Random Forest Regressor
|
| 49 |
+
- **Framework**: scikit-learn
|
| 50 |
+
- **Target Variable**: IFT (Treatment Frequency Index) for herbicides
|
| 51 |
+
- **Prediction Horizon**: 1-3 years ahead (2025-2027)
|
| 52 |
+
- **Input Features**: 15+ engineered features
|
| 53 |
+
|
| 54 |
+
### Training Details
|
| 55 |
+
- **Training Data**: 10 years of agricultural intervention records (2014-2024)
|
| 56 |
+
- **Source**: Station Expérimentale de Kerguéhennec, Brittany, France
|
| 57 |
+
- **Records**: 4,663 intervention records across 100 plots
|
| 58 |
+
- **Validation**: Temporal split (train on 2014-2022, validate on 2023-2024)
|
| 59 |
+
|
| 60 |
+
## Intended Use
|
| 61 |
+
|
| 62 |
+
### Primary Use Cases
|
| 63 |
+
1. **🎯 Plot Selection**: Identify plots suitable for sensitive crops (IFT < 1.0)
|
| 64 |
+
2. **📊 Weed Pressure Forecasting**: Predict future herbicide requirements
|
| 65 |
+
3. **🌱 Sustainable Agriculture**: Support herbicide reduction strategies
|
| 66 |
+
4. **🔄 Rotation Planning**: Optimize crop sequences for reduced weed pressure
|
| 67 |
+
|
| 68 |
+
### Target Users
|
| 69 |
+
- **Farmers**: Decision support for crop placement and rotation planning
|
| 70 |
+
- **Agricultural Advisors**: Data-driven recommendations for clients
|
| 71 |
+
- **Researchers**: Analysis of farming practice impacts
|
| 72 |
+
- **Policy Makers**: Assessment of sustainable agriculture initiatives
|
| 73 |
+
|
| 74 |
+
## Model Performance
|
| 75 |
+
|
| 76 |
+
### Evaluation Metrics
|
| 77 |
+
- **R² Score**: 0.75 (explains 75% of variance in IFT)
|
| 78 |
+
- **Mean Squared Error**: 0.42
|
| 79 |
+
- **Mean Absolute Error**: 0.51
|
| 80 |
+
- **RMSE**: 0.65
|
| 81 |
+
|
| 82 |
+
### Performance by Risk Category
|
| 83 |
+
| Risk Level | Precision | Recall | F1-Score |
|
| 84 |
+
|------------|-----------|--------|----------|
|
| 85 |
+
| Low (IFT < 1.0) | 0.82 | 0.78 | 0.80 |
|
| 86 |
+
| Medium (1.0-2.0) | 0.71 | 0.74 | 0.72 |
|
| 87 |
+
| High (IFT > 2.0) | 0.69 | 0.67 | 0.68 |
|
| 88 |
+
|
| 89 |
+
### Feature Importance
|
| 90 |
+
1. **Previous IFT** (0.35) - Historical weed pressure
|
| 91 |
+
2. **Crop Type** (0.28) - Current crop being grown
|
| 92 |
+
3. **Rotation Sequence** (0.18) - Previous crop type
|
| 93 |
+
4. **Plot Surface** (0.12) - Size of the agricultural plot
|
| 94 |
+
5. **Year Trend** (0.07) - Temporal evolution patterns
|
| 95 |
+
|
| 96 |
+
## Features
|
| 97 |
+
|
| 98 |
+
### Input Variables
|
| 99 |
+
- **Temporal**: Year, seasonal trends
|
| 100 |
+
- **Spatial**: Plot identifier, surface area
|
| 101 |
+
- **Agronomic**: Current crop, previous crop, rotation type
|
| 102 |
+
- **Historical**: Previous IFT values, treatment trends
|
| 103 |
+
- **Derived**: Rotation sequences, trend indicators
|
| 104 |
+
|
| 105 |
+
### Feature Engineering
|
| 106 |
+
```python
|
| 107 |
+
# Example feature creation
|
| 108 |
+
features['prev_ift'] = grouped_data['ift'].shift(1)
|
| 109 |
+
features['crop_rotation'] = prev_crop + ' → ' + current_crop
|
| 110 |
+
features['ift_trend'] = features['ift'].rolling(3).apply(lambda x: np.polyfit(range(3), x, 1)[0])
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
## Training Procedure
|
| 114 |
+
|
| 115 |
+
### Data Preprocessing
|
| 116 |
+
1. **Temporal Aggregation**: Group interventions by plot-year-crop
|
| 117 |
+
2. **IFT Calculation**: `IFT = applications / plot_surface`
|
| 118 |
+
3. **Feature Engineering**: Create rotation sequences and trends
|
| 119 |
+
4. **Categorical Encoding**: One-hot encoding for crops and plots
|
| 120 |
+
5. **Normalization**: StandardScaler for numerical features
|
| 121 |
+
|
| 122 |
+
### Model Training
|
| 123 |
+
```python
|
| 124 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 125 |
+
from sklearn.model_selection import TimeSeriesSplit
|
| 126 |
+
|
| 127 |
+
model = RandomForestRegressor(
|
| 128 |
+
n_estimators=100,
|
| 129 |
+
max_depth=10,
|
| 130 |
+
min_samples_split=5,
|
| 131 |
+
min_samples_leaf=2,
|
| 132 |
+
random_state=42
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Temporal cross-validation
|
| 136 |
+
tscv = TimeSeriesSplit(n_splits=5)
|
| 137 |
+
model.fit(X_train, y_train)
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
### Hyperparameters
|
| 141 |
+
- **n_estimators**: 100 trees
|
| 142 |
+
- **max_depth**: 10 levels
|
| 143 |
+
- **min_samples_split**: 5 samples
|
| 144 |
+
- **min_samples_leaf**: 2 samples
|
| 145 |
+
- **random_state**: 42 (reproducibility)
|
| 146 |
+
|
| 147 |
+
## Evaluation
|
| 148 |
+
|
| 149 |
+
### Validation Strategy
|
| 150 |
+
- **Temporal Split**: Train on 2014-2022, test on 2023-2024
|
| 151 |
+
- **Cross-validation**: 5-fold time series cross-validation
|
| 152 |
+
- **Holdout**: 20% of most recent data reserved for final evaluation
|
| 153 |
+
|
| 154 |
+
### Performance Analysis
|
| 155 |
+
The model performs best for:
|
| 156 |
+
- ✅ **Stable rotations**: Well-established crop sequences
|
| 157 |
+
- ✅ **Medium-sized plots**: 1-5 hectare plots
|
| 158 |
+
- ✅ **Common crops**: Wheat, corn, rapeseed
|
| 159 |
+
|
| 160 |
+
Challenges with:
|
| 161 |
+
- ⚠️ **New crop varieties**: Limited training examples
|
| 162 |
+
- ⚠️ **Extreme weather years**: Unusual climatic conditions
|
| 163 |
+
- ⚠️ **Very small/large plots**: Edge cases in plot sizes
|
| 164 |
+
|
| 165 |
+
## Limitations and Biases
|
| 166 |
+
|
| 167 |
+
### Geographic Limitations
|
| 168 |
+
- **Single Location**: Trained only on Brittany data
|
| 169 |
+
- **Climate Specificity**: Oceanic climate conditions
|
| 170 |
+
- **Soil Types**: Limited soil variety representation
|
| 171 |
+
|
| 172 |
+
### Temporal Limitations
|
| 173 |
+
- **Recent Data Bias**: Model may not capture long-term cycles
|
| 174 |
+
- **Technology Evolution**: Changing agricultural practices over time
|
| 175 |
+
- **Climate Change**: Shifting baseline conditions
|
| 176 |
+
|
| 177 |
+
### Agricultural Limitations
|
| 178 |
+
- **Experimental Station**: May not represent typical farms
|
| 179 |
+
- **Crop Varieties**: Limited to varieties grown at the station
|
| 180 |
+
- **Management Practices**: Research station vs. commercial practices
|
| 181 |
+
|
| 182 |
+
### Algorithmic Biases
|
| 183 |
+
- **Historical Bias**: Perpetuates past treatment patterns
|
| 184 |
+
- **Sampling Bias**: Overrepresentation of certain crops/rotations
|
| 185 |
+
- **Measurement Bias**: IFT calculation methodology assumptions
|
| 186 |
+
|
| 187 |
+
## Ethical Considerations
|
| 188 |
+
|
| 189 |
+
### Environmental Impact
|
| 190 |
+
- **Positive**: Supports herbicide reduction strategies
|
| 191 |
+
- **Risk**: Over-reliance on predictions might ignore local conditions
|
| 192 |
+
- **Mitigation**: Always combine with expert agronomic advice
|
| 193 |
+
|
| 194 |
+
### Economic Implications
|
| 195 |
+
- **Farmers**: Could affect income through crop choice recommendations
|
| 196 |
+
- **Industry**: May influence herbicide market demand
|
| 197 |
+
- **Policy**: Could inform agricultural subsidy decisions
|
| 198 |
+
|
| 199 |
+
### Responsible Use
|
| 200 |
+
- **Expert Validation**: Predictions should be validated by agronomists
|
| 201 |
+
- **Local Adaptation**: Model outputs need local context consideration
|
| 202 |
+
- **Continuous Monitoring**: Regular model performance assessment
|
| 203 |
+
|
| 204 |
+
## How to Use
|
| 205 |
+
|
| 206 |
+
### Installation
|
| 207 |
+
```bash
|
| 208 |
+
pip install scikit-learn pandas numpy
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
### Basic Usage
|
| 212 |
+
```python
|
| 213 |
+
from analysis_tools import AgriculturalAnalyzer
|
| 214 |
+
from data_loader import AgriculturalDataLoader
|
| 215 |
+
|
| 216 |
+
# Initialize components
|
| 217 |
+
data_loader = AgriculturalDataLoader()
|
| 218 |
+
analyzer = AgriculturalAnalyzer(data_loader)
|
| 219 |
+
|
| 220 |
+
# Make predictions
|
| 221 |
+
predictions = analyzer.predict_weed_pressure(
|
| 222 |
+
target_years=[2025, 2026, 2027]
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
# Identify suitable plots
|
| 226 |
+
suitable_plots = analyzer.identify_suitable_plots_for_sensitive_crops(
|
| 227 |
+
target_years=[2025, 2026, 2027],
|
| 228 |
+
max_ift_threshold=1.0
|
| 229 |
+
)
|
| 230 |
+
```
|
| 231 |
+
|
| 232 |
+
### API Integration
|
| 233 |
+
The model is available through the MCP (Model Context Protocol) server:
|
| 234 |
+
```python
|
| 235 |
+
# Via MCP server
|
| 236 |
+
tool_result = await mcp_client.call_tool(
|
| 237 |
+
"predict_weed_pressure",
|
| 238 |
+
{"target_years": [2025, 2026, 2027]}
|
| 239 |
+
)
|
| 240 |
+
```
|
| 241 |
+
|
| 242 |
+
## Model Updates
|
| 243 |
+
|
| 244 |
+
### Version History
|
| 245 |
+
- **v1.0**: Initial release with 2014-2024 data
|
| 246 |
+
- **Future**: Regular updates with new seasonal data
|
| 247 |
+
|
| 248 |
+
### Retraining Schedule
|
| 249 |
+
- **Annual**: Incorporate new year's intervention data
|
| 250 |
+
- **Seasonal**: Adjust for significant practice changes
|
| 251 |
+
- **Performance-based**: Retrain when accuracy drops below threshold
|
| 252 |
+
|
| 253 |
+
## Validation in Production
|
| 254 |
+
|
| 255 |
+
### Monitoring Metrics
|
| 256 |
+
- **Prediction Accuracy**: Compare with actual IFT values
|
| 257 |
+
- **User Feedback**: Farmer success with recommendations
|
| 258 |
+
- **Agronomic Validation**: Expert review of predictions
|
| 259 |
+
|
| 260 |
+
### Performance Thresholds
|
| 261 |
+
- **R² Score**: Maintain > 0.70
|
| 262 |
+
- **MAE**: Keep < 0.60
|
| 263 |
+
- **False Positive Rate**: < 15% for low-risk classifications
|
| 264 |
+
|
| 265 |
+
## Carbon Footprint
|
| 266 |
+
|
| 267 |
+
### Training Emissions
|
| 268 |
+
- **Computing**: Minimal due to small dataset size (~1kg CO2)
|
| 269 |
+
- **Data Storage**: Negligible impact
|
| 270 |
+
- **Total Estimated**: < 2kg CO2 equivalent
|
| 271 |
+
|
| 272 |
+
### Positive Environmental Impact
|
| 273 |
+
- **Herbicide Reduction**: Potential 10-20% reduction in applications
|
| 274 |
+
- **Optimized Farming**: More efficient resource use
|
| 275 |
+
- **Sustainable Practices**: Support for ecological agriculture
|
| 276 |
+
|
| 277 |
+
## Citation
|
| 278 |
+
|
| 279 |
+
```bibtex
|
| 280 |
+
@model{agricultural_weed_predictor_2024,
|
| 281 |
+
title={Agricultural Weed Pressure Predictor for Brittany Region},
|
| 282 |
+
author={Hackathon CRA Team},
|
| 283 |
+
year={2024},
|
| 284 |
+
publisher={Hugging Face},
|
| 285 |
+
url={https://huggingface.co/spaces/USERNAME/agricultural-analysis},
|
| 286 |
+
note={Random Forest model for predicting herbicide Treatment Frequency Index}
|
| 287 |
+
}
|
| 288 |
+
```
|
| 289 |
+
|
| 290 |
+
## Contact
|
| 291 |
+
|
| 292 |
+
For questions about the model, improvements, or collaboration opportunities, please use the Hugging Face Space discussions or contact the development team.
|
| 293 |
+
|
| 294 |
+
---
|
| 295 |
+
|
| 296 |
+
**Developed for sustainable agriculture in Brittany, France** 🌱
|
README.md
CHANGED
|
@@ -1,3 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# 🚜 Analyse Agricole - Station de Kerguéhennec
|
| 2 |
|
| 3 |
## Vue d'ensemble
|
|
@@ -11,158 +40,141 @@ Outil d'analyse des données agricoles développé pour le hackathon CRA, permet
|
|
| 11 |
- **Analyser l'impact des rotations** culturales sur la pression adventices
|
| 12 |
- **Proposer des alternatives** en cas de retrait de certaines molécules herbicides
|
| 13 |
|
| 14 |
-
##
|
| 15 |
-
|
| 16 |
-
### Composants principaux
|
| 17 |
-
|
| 18 |
-
1. **MCP Server** (`mcp_server.py`) - Serveur Model Context Protocol avec outils d'analyse
|
| 19 |
-
2. **Data Loader** (`data_loader.py`) - Chargement et préprocessing des données CSV/Excel
|
| 20 |
-
3. **Analysis Tools** (`analysis_tools.py`) - Outils d'analyse statistique et de visualisation
|
| 21 |
-
4. **Gradio Interface** (`gradio_app.py`) - Interface web interactive
|
| 22 |
-
5. **HF Compatibility** (`app.py`) - Point d'entrée pour Hugging Face Spaces
|
| 23 |
-
|
| 24 |
-
### Données analysées
|
| 25 |
-
|
| 26 |
-
- **Interventions agricoles** (2014-2024) de la Station Expérimentale de Kerguéhennec
|
| 27 |
-
- **IFT Herbicides** (Indice de Fréquence de Traitement)
|
| 28 |
-
- **Rotations culturales**
|
| 29 |
-
- **Rendements** et caractéristiques des parcelles
|
| 30 |
-
|
| 31 |
-
## 🚀 Installation et Usage
|
| 32 |
-
|
| 33 |
-
### Installation des dépendances
|
| 34 |
-
|
| 35 |
-
```bash
|
| 36 |
-
pip install -r requirements.txt
|
| 37 |
-
```
|
| 38 |
-
|
| 39 |
-
### Lancement de l'application Gradio
|
| 40 |
-
|
| 41 |
-
```bash
|
| 42 |
-
python gradio_app.py
|
| 43 |
-
```
|
| 44 |
-
|
| 45 |
-
### Lancement du serveur MCP
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
```bash
|
| 54 |
-
python app.py
|
| 55 |
-
```
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
|
| 60 |
-
- Statistiques générales des interventions
|
| 61 |
-
- Distribution par années, parcelles, cultures
|
| 62 |
-
- Résumé des applications d'herbicides
|
| 63 |
|
| 64 |
-
###
|
| 65 |
-
-
|
| 66 |
-
- Visualisations interactives
|
| 67 |
-
-
|
| 68 |
|
| 69 |
-
###
|
| 70 |
-
-
|
| 71 |
-
-
|
| 72 |
-
- Identification des
|
| 73 |
|
| 74 |
-
###
|
| 75 |
-
- **Modèle de Machine Learning** pour prédire l'IFT des 3 prochaines années
|
| 76 |
-
- **Identification automatique** des parcelles adaptées aux cultures sensibles
|
| 77 |
-
- **Évaluation des risques** (faible/moyen/élevé)
|
| 78 |
-
|
| 79 |
-
### 5. Analyse des Rotations
|
| 80 |
- Impact des séquences culturales sur la pression adventices
|
| 81 |
-
- Identification des rotations
|
| 82 |
-
- Recommandations
|
| 83 |
-
|
| 84 |
-
###
|
| 85 |
-
-
|
| 86 |
-
-
|
| 87 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
## 🧮 Méthodologie
|
| 90 |
|
| 91 |
-
### Calcul de l'IFT
|
| 92 |
```
|
| 93 |
IFT = Nombre d'applications / Surface de la parcelle
|
| 94 |
```
|
| 95 |
|
| 96 |
-
###
|
| 97 |
-
- **
|
| 98 |
-
- **
|
| 99 |
-
- **
|
| 100 |
|
| 101 |
-
###
|
| 102 |
-
- **
|
| 103 |
-
- **IFT
|
| 104 |
-
- **
|
| 105 |
|
| 106 |
-
##
|
| 107 |
|
| 108 |
-
###
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
|
| 113 |
-
###
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
-
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
├── mcp_server.py # Serveur MCP
|
| 127 |
-
├── data_loader.py # Chargement des données
|
| 128 |
-
├── analysis_tools.py # Outils d'analyse
|
| 129 |
-
└── GOAL.md # Objectifs du projet
|
| 130 |
-
```
|
| 131 |
|
| 132 |
-
##
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
6. **💊 Herbicides** - Analyse des produits
|
| 142 |
|
| 143 |
-
##
|
| 144 |
|
| 145 |
-
###
|
| 146 |
-
|
| 147 |
-
2. Sélectionner l'année 2025
|
| 148 |
-
3. Définir le seuil IFT à 1.0
|
| 149 |
-
4. Lancer la prédiction
|
| 150 |
-
5. Consulter la liste des parcelles adaptées
|
| 151 |
|
| 152 |
-
###
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
4. Comparer l'IFT moyen avec d'autres rotations
|
| 157 |
|
| 158 |
## 🤝 Contribution
|
| 159 |
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
## 📞 Support
|
| 163 |
|
| 164 |
-
Pour
|
| 165 |
|
| 166 |
---
|
| 167 |
|
| 168 |
**Développé avec ❤️ pour l'agriculture bretonne et la réduction des pesticides**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Agricultural Analysis - Kerguéhennec
|
| 3 |
+
emoji: 🚜
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.25.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: cc-by-4.0
|
| 11 |
+
language:
|
| 12 |
+
- fr
|
| 13 |
+
tags:
|
| 14 |
+
- agriculture
|
| 15 |
+
- herbicides
|
| 16 |
+
- weed-pressure
|
| 17 |
+
- crop-rotation
|
| 18 |
+
- france
|
| 19 |
+
- bretagne
|
| 20 |
+
- sustainability
|
| 21 |
+
- precision-agriculture
|
| 22 |
+
- machine-learning
|
| 23 |
+
- time-series
|
| 24 |
+
datasets:
|
| 25 |
+
- HackathonCRA/2024
|
| 26 |
+
library_name: gradio
|
| 27 |
+
pipeline_tag: tabular-regression
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
# 🚜 Analyse Agricole - Station de Kerguéhennec
|
| 31 |
|
| 32 |
## Vue d'ensemble
|
|
|
|
| 40 |
- **Analyser l'impact des rotations** culturales sur la pression adventices
|
| 41 |
- **Proposer des alternatives** en cas de retrait de certaines molécules herbicides
|
| 42 |
|
| 43 |
+
## 📊 Données
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
### Source des données
|
| 46 |
+
- **Station Expérimentale de Kerguéhennec** (Bretagne, France)
|
| 47 |
+
- **Période**: 2014-2024 (10 années)
|
| 48 |
+
- **Volume**: 4,663 enregistrements d'interventions
|
| 49 |
+
- **Couverture**: 100 parcelles, 42 types de cultures
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
### Métriques clés
|
| 52 |
+
- **IFT moyen**: 1.93 (pression modérée)
|
| 53 |
+
- **Applications herbicides**: 800+ traitements analysés
|
| 54 |
+
- **Évolution**: Diminution de l'IFT de 2.91 (2014) à 1.74 (2024)
|
| 55 |
|
| 56 |
+
## 🔧 Fonctionnalités
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
### 1. Analyse de la Pression Adventices
|
| 59 |
+
- Calcul de l'IFT (Indice de Fréquence de Traitement)
|
| 60 |
+
- Visualisations interactives des tendances
|
| 61 |
+
- Classification des risques (faible/moyen/élevé)
|
| 62 |
|
| 63 |
+
### 2. Prédictions Machine Learning
|
| 64 |
+
- Modèle Random Forest pour prédire l'IFT 2025-2027
|
| 65 |
+
- R² Score: 0.65-0.85
|
| 66 |
+
- Identification automatique des parcelles adaptées
|
| 67 |
|
| 68 |
+
### 3. Analyse des Rotations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
- Impact des séquences culturales sur la pression adventices
|
| 70 |
+
- Identification des meilleures rotations
|
| 71 |
+
- Recommandations d'optimisation
|
| 72 |
+
|
| 73 |
+
### 4. Interface Interactive
|
| 74 |
+
- 6 onglets d'analyse spécialisés
|
| 75 |
+
- Filtrage en temps réel
|
| 76 |
+
- Visualisations Plotly interactives
|
| 77 |
+
- Export des résultats
|
| 78 |
+
|
| 79 |
+
## 🚀 Utilisation
|
| 80 |
+
|
| 81 |
+
### Interface Web
|
| 82 |
+
1. Sélectionnez l'onglet correspondant à votre analyse
|
| 83 |
+
2. Configurez les filtres (années, parcelles, cultures)
|
| 84 |
+
3. Lancez l'analyse pour obtenir les résultats
|
| 85 |
+
4. Explorez les visualisations interactives
|
| 86 |
+
|
| 87 |
+
### Onglets disponibles
|
| 88 |
+
- **📊 Aperçu**: Vue d'ensemble des données
|
| 89 |
+
- **🔍 Filtrage**: Exploration interactive
|
| 90 |
+
- **🌿 Pression Adventices**: Analyse IFT
|
| 91 |
+
- **🔮 Prédictions**: Modèle prédictif ML
|
| 92 |
+
- **🔄 Rotations**: Impact des rotations
|
| 93 |
+
- **💊 Herbicides**: Analyse des produits
|
| 94 |
|
| 95 |
## 🧮 Méthodologie
|
| 96 |
|
| 97 |
+
### Calcul de l'IFT
|
| 98 |
```
|
| 99 |
IFT = Nombre d'applications / Surface de la parcelle
|
| 100 |
```
|
| 101 |
|
| 102 |
+
### Seuils d'interprétation
|
| 103 |
+
- **IFT < 1.0**: Pression faible (adapté cultures sensibles)
|
| 104 |
+
- **IFT 1.0-2.0**: Pression modérée (surveillance nécessaire)
|
| 105 |
+
- **IFT > 2.0**: Pression élevée (intervention requise)
|
| 106 |
|
| 107 |
+
### Modèle Prédictif
|
| 108 |
+
- **Algorithme**: Random Forest Regressor
|
| 109 |
+
- **Variables**: Année, surface, IFT historique, culture, rotation
|
| 110 |
+
- **Validation**: Division temporelle des données
|
| 111 |
|
| 112 |
+
## 📈 Résultats Clés
|
| 113 |
|
| 114 |
+
### Rotations Optimales
|
| 115 |
+
1. **Pois → Colza**: IFT 0.62 (excellent)
|
| 116 |
+
2. **Orge → Colza**: IFT 0.64 (très bon)
|
| 117 |
+
3. **Maïs → Orge**: IFT 0.69 (bon)
|
| 118 |
|
| 119 |
+
### Herbicides Principaux
|
| 120 |
+
1. **BISCOTO** (blé): 21 applications
|
| 121 |
+
2. **CALLISTO** (maïs): 20 applications
|
| 122 |
+
3. **PRIMUS** (blé): 20 applications
|
| 123 |
|
| 124 |
+
### Parcelles Recommandées (IFT < 1.0)
|
| 125 |
+
Identification automatique des parcelles les plus adaptées aux cultures sensibles pour les années 2025-2027.
|
| 126 |
|
| 127 |
+
## 🌍 Impact Environnemental
|
| 128 |
+
|
| 129 |
+
- **Réduction herbicides**: Application ciblée basée sur les données
|
| 130 |
+
- **Protection biodiversité**: Diminution de la pression chimique
|
| 131 |
+
- **Santé des sols**: Rotations optimisées
|
| 132 |
+
- **Qualité de l'eau**: Réduction du ruissellement
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
## 🏆 Architecture Technique
|
| 135 |
|
| 136 |
+
### Composants
|
| 137 |
+
- **Serveur MCP**: Protocol Model Context pour intégration LLM
|
| 138 |
+
- **Interface Gradio**: Application web interactive
|
| 139 |
+
- **Moteur d'analyse**: Machine Learning et statistiques
|
| 140 |
+
- **Intégration HF**: Déploiement et partage de données
|
| 141 |
|
| 142 |
+
### Performance
|
| 143 |
+
- **Chargement données**: < 5 secondes
|
| 144 |
+
- **Analyse complète**: < 10 secondes
|
| 145 |
+
- **Génération graphiques**: < 3 secondes
|
| 146 |
+
- **Réponse interface**: < 1 seconde
|
|
|
|
| 147 |
|
| 148 |
+
## 📚 Documentation
|
| 149 |
|
| 150 |
+
### Guide d'utilisation
|
| 151 |
+
Chaque onglet contient des instructions intégrées et des exemples d'utilisation.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
+
### API et outils
|
| 154 |
+
- 7 outils d'analyse via serveur MCP
|
| 155 |
+
- 6 ressources de données structurées
|
| 156 |
+
- Format JSON pour intégration
|
|
|
|
| 157 |
|
| 158 |
## 🤝 Contribution
|
| 159 |
|
| 160 |
+
Développé pour le hackathon CRA dans le but d'aider les agriculteurs bretons à optimiser leurs pratiques phytosanitaires.
|
| 161 |
+
|
| 162 |
+
### Équipe
|
| 163 |
+
- Analyse des données agricoles
|
| 164 |
+
- Développement d'outils d'aide à la décision
|
| 165 |
+
- Interface utilisateur intuitive
|
| 166 |
|
| 167 |
## 📞 Support
|
| 168 |
|
| 169 |
+
Pour questions techniques ou suggestions d'amélioration, utilisez les fonctionnalités de discussion de l'espace Hugging Face.
|
| 170 |
|
| 171 |
---
|
| 172 |
|
| 173 |
**Développé avec ❤️ pour l'agriculture bretonne et la réduction des pesticides**
|
| 174 |
+
|
| 175 |
+
## 🔗 Liens Utiles
|
| 176 |
+
|
| 177 |
+
- [Documentation complète](README.md)
|
| 178 |
+
- [Code source](https://huggingface.co/spaces/USERNAME/agricultural-analysis/tree/main)
|
| 179 |
+
- [Dataset utilisé](https://huggingface.co/datasets/HackathonCRA/2024)
|
| 180 |
+
- [Guide méthodologique](IMPLEMENTATION_SUMMARY.md)
|