feat: 01_06 End
Browse files- app/app.py +2 -200
- app/prompt.py +0 -26
app/app.py
CHANGED
|
@@ -1,207 +1,9 @@
|
|
| 1 |
-
# Chroma compatibility issue resolution
|
| 2 |
-
# https://docs.trychroma.com/troubleshooting#sqlite
|
| 3 |
-
__import__('pysqlite3')
|
| 4 |
-
import sys
|
| 5 |
-
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
| 6 |
-
|
| 7 |
-
from tempfile import NamedTemporaryFile
|
| 8 |
-
|
| 9 |
import chainlit as cl
|
| 10 |
-
from chainlit.types import AskFileResponse
|
| 11 |
-
|
| 12 |
-
import chromadb
|
| 13 |
-
from chromadb.config import Settings
|
| 14 |
-
from langchain.chains import ConversationalRetrievalChain, RetrievalQAWithSourcesChain
|
| 15 |
-
from langchain.chains.base import Chain
|
| 16 |
-
from langchain.chat_models import ChatOpenAI
|
| 17 |
-
from langchain.document_loaders import PDFPlumberLoader
|
| 18 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
| 19 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 20 |
-
from langchain.vectorstores import Chroma
|
| 21 |
-
from langchain.vectorstores.base import VectorStore
|
| 22 |
-
|
| 23 |
-
from prompt import EXAMPLE_PROMPT, PROMPT, WELCOME_MESSAGE
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
namespaces = set()
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def process_file(*, file: AskFileResponse) -> list:
|
| 30 |
-
if file.type != "application/pdf":
|
| 31 |
-
raise TypeError("Only PDF files are supported")
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
with NamedTemporaryFile() as tempfile:
|
| 35 |
-
tempfile.write(file.content)
|
| 36 |
-
|
| 37 |
-
######################################################################
|
| 38 |
-
#
|
| 39 |
-
# 1. Load the PDF
|
| 40 |
-
#
|
| 41 |
-
######################################################################
|
| 42 |
-
loader = PDFPlumberLoader(tempfile.name)
|
| 43 |
-
|
| 44 |
-
######################################################################
|
| 45 |
-
documents = loader.load()
|
| 46 |
-
|
| 47 |
-
######################################################################
|
| 48 |
-
#
|
| 49 |
-
# 2. Split the text
|
| 50 |
-
#
|
| 51 |
-
######################################################################
|
| 52 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
| 53 |
-
chunk_size=3000,
|
| 54 |
-
chunk_overlap=100
|
| 55 |
-
)
|
| 56 |
-
######################################################################
|
| 57 |
-
|
| 58 |
-
docs = text_splitter.split_documents(documents)
|
| 59 |
-
|
| 60 |
-
for i, doc in enumerate(docs):
|
| 61 |
-
doc.metadata["source"] = f"source_{i}"
|
| 62 |
-
|
| 63 |
-
if not docs:
|
| 64 |
-
raise ValueError("PDF file parsing failed.")
|
| 65 |
-
|
| 66 |
-
return docs
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def create_search_engine(*, file: AskFileResponse) -> VectorStore:
|
| 70 |
-
|
| 71 |
-
# Process and save data in the user session
|
| 72 |
-
docs = process_file(file=file)
|
| 73 |
-
cl.user_session.set("docs", docs)
|
| 74 |
-
|
| 75 |
-
##########################################################################
|
| 76 |
-
#
|
| 77 |
-
# 3. Set the Encoder model for creating embeddings
|
| 78 |
-
#
|
| 79 |
-
##########################################################################
|
| 80 |
-
encoder = OpenAIEmbeddings(
|
| 81 |
-
model="text-embedding-ada-002"
|
| 82 |
-
)
|
| 83 |
-
##########################################################################
|
| 84 |
-
|
| 85 |
-
# Initialize Chromadb client and settings, reset to ensure we get a clean
|
| 86 |
-
# search engine
|
| 87 |
-
client = chromadb.EphemeralClient()
|
| 88 |
-
client_settings=Settings(
|
| 89 |
-
allow_reset=True,
|
| 90 |
-
anonymized_telemetry=False
|
| 91 |
-
)
|
| 92 |
-
search_engine = Chroma(
|
| 93 |
-
client=client,
|
| 94 |
-
client_settings=client_settings
|
| 95 |
-
)
|
| 96 |
-
search_engine._client.reset()
|
| 97 |
-
|
| 98 |
-
##########################################################################
|
| 99 |
-
#
|
| 100 |
-
# 4. Create the document search engine. Remember to add
|
| 101 |
-
# client_settings using the above settings.
|
| 102 |
-
#
|
| 103 |
-
##########################################################################
|
| 104 |
-
|
| 105 |
-
search_engine = Chroma.from_documents(
|
| 106 |
-
client=client,
|
| 107 |
-
documents=docs,
|
| 108 |
-
embedding=encoder,
|
| 109 |
-
client_settings=client_settings
|
| 110 |
-
)
|
| 111 |
-
##########################################################################
|
| 112 |
-
|
| 113 |
-
return search_engine
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
@cl.on_chat_start
|
| 117 |
-
async def start():
|
| 118 |
-
|
| 119 |
-
files = None
|
| 120 |
-
while files is None:
|
| 121 |
-
files = await cl.AskFileMessage(
|
| 122 |
-
content=WELCOME_MESSAGE,
|
| 123 |
-
accept=["application/pdf"],
|
| 124 |
-
max_size_mb=20,
|
| 125 |
-
).send()
|
| 126 |
-
|
| 127 |
-
file = files[0]
|
| 128 |
-
msg = cl.Message(content=f"Processing `{file.name}`...")
|
| 129 |
-
await msg.send()
|
| 130 |
-
|
| 131 |
-
try:
|
| 132 |
-
search_engine = await cl.make_async(create_search_engine)(file=file)
|
| 133 |
-
except Exception as e:
|
| 134 |
-
await cl.Message(content=f"Error: {e}").send()
|
| 135 |
-
raise SystemError
|
| 136 |
-
|
| 137 |
-
llm = ChatOpenAI(
|
| 138 |
-
model='gpt-3.5-turbo-16k-0613',
|
| 139 |
-
temperature=0,
|
| 140 |
-
streaming=True
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
##########################################################################
|
| 144 |
-
#
|
| 145 |
-
# 5. Create the chain / tool for RetrievalQAWithSourcesChain.
|
| 146 |
-
#
|
| 147 |
-
##########################################################################
|
| 148 |
-
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
| 149 |
-
llm=llm,
|
| 150 |
-
chain_type="stuff",
|
| 151 |
-
retriever=search_engine.as_retriever(max_tokens_limit=4097),
|
| 152 |
-
######################################################################
|
| 153 |
-
# 6. Customize prompts to improve summarization and question
|
| 154 |
-
# answering performance. Perhaps create your own prompt in prompts.py?
|
| 155 |
-
######################################################################
|
| 156 |
-
chain_type_kwargs={
|
| 157 |
-
"prompt": PROMPT,
|
| 158 |
-
"document_prompt": EXAMPLE_PROMPT
|
| 159 |
-
},
|
| 160 |
-
)
|
| 161 |
-
##########################################################################
|
| 162 |
-
|
| 163 |
-
# await msg.update(content=f"`{file.name}` processed. You can now ask questions!")
|
| 164 |
-
msg.content = f"`{file.name}` processed. You can now ask questions!"
|
| 165 |
-
await msg.update()
|
| 166 |
-
|
| 167 |
-
cl.user_session.set("chain", chain)
|
| 168 |
|
| 169 |
|
| 170 |
@cl.on_message
|
| 171 |
async def main(message: cl.Message):
|
| 172 |
|
| 173 |
-
|
| 174 |
-
cb = cl.AsyncLangchainCallbackHandler()
|
| 175 |
-
response = await chain.acall(message.content, callbacks=[cb])
|
| 176 |
-
answer = response["answer"]
|
| 177 |
-
sources = response["sources"].strip()
|
| 178 |
-
source_elements = []
|
| 179 |
-
|
| 180 |
-
# Get the documents from the user session
|
| 181 |
-
docs = cl.user_session.get("docs")
|
| 182 |
-
metadatas = [doc.metadata for doc in docs]
|
| 183 |
-
all_sources = [m["source"] for m in metadatas]
|
| 184 |
-
|
| 185 |
-
# Adding sources to the answer
|
| 186 |
-
if sources:
|
| 187 |
-
found_sources = []
|
| 188 |
-
|
| 189 |
-
# Add the sources to the message
|
| 190 |
-
for source in sources.split(","):
|
| 191 |
-
source_name = source.strip().replace(".", "")
|
| 192 |
-
# Get the index of the source
|
| 193 |
-
try:
|
| 194 |
-
index = all_sources.index(source_name)
|
| 195 |
-
except ValueError:
|
| 196 |
-
continue
|
| 197 |
-
text = docs[index].page_content
|
| 198 |
-
found_sources.append(source_name)
|
| 199 |
-
# Create the text element referenced in the message
|
| 200 |
-
source_elements.append(cl.Text(content=text, name=source_name))
|
| 201 |
-
|
| 202 |
-
if found_sources:
|
| 203 |
-
answer += f"\nSources: {', '.join(found_sources)}"
|
| 204 |
-
else:
|
| 205 |
-
answer += "\nNo sources found"
|
| 206 |
|
| 207 |
-
await cl.Message(content=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import chainlit as cl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
@cl.on_message
|
| 5 |
async def main(message: cl.Message):
|
| 6 |
|
| 7 |
+
response = message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
await cl.Message(content=response).send()
|
app/prompt.py
DELETED
|
@@ -1,26 +0,0 @@
|
|
| 1 |
-
# flake8: noqa
|
| 2 |
-
from langchain.prompts import PromptTemplate
|
| 3 |
-
|
| 4 |
-
WELCOME_MESSAGE = """\
|
| 5 |
-
Welcome to Introduction to LLM App Development Sample PDF QA Application!
|
| 6 |
-
To get started:
|
| 7 |
-
1. Upload a PDF or text file
|
| 8 |
-
2. Ask any question about the file!
|
| 9 |
-
"""
|
| 10 |
-
|
| 11 |
-
template = """Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES").
|
| 12 |
-
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
|
| 13 |
-
ALWAYS return a "SOURCES" field in your answer, with the format "SOURCES: <source1>, <source2>, <source3>, ...".
|
| 14 |
-
|
| 15 |
-
QUESTION: {question}
|
| 16 |
-
=========
|
| 17 |
-
{summaries}
|
| 18 |
-
=========
|
| 19 |
-
FINAL ANSWER:"""
|
| 20 |
-
|
| 21 |
-
PROMPT = PromptTemplate(template=template, input_variables=["summaries", "question"])
|
| 22 |
-
|
| 23 |
-
EXAMPLE_PROMPT = PromptTemplate(
|
| 24 |
-
template="Content: {page_content}\nSource: {source}",
|
| 25 |
-
input_variables=["page_content", "source"],
|
| 26 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|