Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image, ImageDraw
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import OwlViTProcessor, OwlViTForObjectDetection, OwlViTModel, OwlViTImageProcessor
|
| 5 |
+
from transformers.image_transforms import center_to_corners_format
|
| 6 |
+
from transformers.models.owlvit.modeling_owlvit import box_iou
|
| 7 |
+
from functools import partial
|
| 8 |
+
|
| 9 |
+
# from utils import iou
|
| 10 |
+
|
| 11 |
+
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
| 12 |
+
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
|
| 13 |
+
|
| 14 |
+
from transformers.models.owlvit.modeling_owlvit import OwlViTImageGuidedObjectDetectionOutput, OwlViTClassPredictionHead
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def classpredictionhead_box_forward(
|
| 21 |
+
self,
|
| 22 |
+
image_embeds,
|
| 23 |
+
query_indice,
|
| 24 |
+
query_mask,
|
| 25 |
+
):
|
| 26 |
+
image_class_embeds = self.dense0(image_embeds)
|
| 27 |
+
|
| 28 |
+
# Normalize image and text features
|
| 29 |
+
image_class_embeds = image_class_embeds / (torch.linalg.norm(image_class_embeds, dim=-1, keepdim=True) + 1e-6)
|
| 30 |
+
print(image_class_embeds.shape)
|
| 31 |
+
query_embeds = image_class_embeds[0, query_indice].unsqueeze(0).unsqueeze(0)
|
| 32 |
+
print(query_embeds.shape)
|
| 33 |
+
# query_embeds = query_embeds / (torch.linalg.norm(query_embeds, dim=-1, keepdim=True) + 1e-6)
|
| 34 |
+
|
| 35 |
+
# Get class predictions
|
| 36 |
+
pred_logits = torch.einsum("...pd,...qd->...pq", image_class_embeds, query_embeds)
|
| 37 |
+
|
| 38 |
+
# Apply a learnable shift and scale to logits
|
| 39 |
+
logit_shift = self.logit_shift(image_embeds)
|
| 40 |
+
logit_scale = self.logit_scale(image_embeds)
|
| 41 |
+
logit_scale = self.elu(logit_scale) + 1
|
| 42 |
+
pred_logits = (pred_logits + logit_shift) * logit_scale
|
| 43 |
+
|
| 44 |
+
if query_mask is not None:
|
| 45 |
+
if query_mask.ndim > 1:
|
| 46 |
+
query_mask = torch.unsqueeze(query_mask, dim=-2)
|
| 47 |
+
|
| 48 |
+
pred_logits = pred_logits.to(torch.float64)
|
| 49 |
+
pred_logits = torch.where(query_mask == 0, -1e6, pred_logits)
|
| 50 |
+
pred_logits = pred_logits.to(torch.float32)
|
| 51 |
+
|
| 52 |
+
return (pred_logits, image_class_embeds)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def class_predictor(
|
| 57 |
+
self,
|
| 58 |
+
image_feats,
|
| 59 |
+
query_indice=None,
|
| 60 |
+
query_mask=None,
|
| 61 |
+
):
|
| 62 |
+
|
| 63 |
+
(pred_logits, image_class_embeds) = self.class_head.classpredictionhead_box_forward(image_feats, query_indice, query_mask)
|
| 64 |
+
|
| 65 |
+
return (pred_logits, image_class_embeds)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_max_iou_indice(target_pred_boxes, query_box, target_sizes):
|
| 75 |
+
boxes = center_to_corners_format(target_pred_boxes)
|
| 76 |
+
img_h, img_w = target_sizes.unbind(1)
|
| 77 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
| 78 |
+
boxes = boxes * scale_fct[:, None, :]
|
| 79 |
+
|
| 80 |
+
iou, _ = box_iou(boxes.squeeze(0), query_box)
|
| 81 |
+
|
| 82 |
+
return iou.argmax()
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def box_guided_detection(
|
| 86 |
+
self: OwlViTForObjectDetection,
|
| 87 |
+
pixel_values,
|
| 88 |
+
query_box=None,
|
| 89 |
+
target_sizes=None,
|
| 90 |
+
output_attentions=None,
|
| 91 |
+
output_hidden_states=None,
|
| 92 |
+
return_dict=None,
|
| 93 |
+
):
|
| 94 |
+
|
| 95 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 96 |
+
output_hidden_states = (
|
| 97 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 98 |
+
)
|
| 99 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
| 100 |
+
|
| 101 |
+
# Compute feature maps for the input and query images
|
| 102 |
+
# query_feature_map = self.image_embedder(pixel_values=query_pixel_values)[0]
|
| 103 |
+
feature_map, vision_outputs = self.image_embedder(
|
| 104 |
+
pixel_values=pixel_values,
|
| 105 |
+
output_attentions=output_attentions,
|
| 106 |
+
output_hidden_states=output_hidden_states,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
|
| 110 |
+
image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
| 111 |
+
|
| 112 |
+
# batch_size, num_patches, num_patches, hidden_dim = query_feature_map.shape
|
| 113 |
+
# query_image_feats = torch.reshape(query_feature_map, (batch_size, num_patches * num_patches, hidden_dim))
|
| 114 |
+
# # Get top class embedding and best box index for each query image in batch
|
| 115 |
+
# query_embeds, best_box_indices, query_pred_boxes = self.embed_image_query(query_image_feats, query_feature_map)
|
| 116 |
+
|
| 117 |
+
# Predict object boxes
|
| 118 |
+
target_pred_boxes = self.box_predictor(image_feats, feature_map)
|
| 119 |
+
|
| 120 |
+
# Get MAX IOU box corresponding embedding
|
| 121 |
+
query_indice = get_max_iou_indice(target_pred_boxes, query_box, target_sizes)
|
| 122 |
+
|
| 123 |
+
# Predict object classes [batch_size, num_patches, num_queries+1]
|
| 124 |
+
(pred_logits, class_embeds) = self.class_predictor(image_feats=image_feats, query_indice=query_indice)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
if not return_dict:
|
| 131 |
+
output = (
|
| 132 |
+
feature_map,
|
| 133 |
+
# query_feature_map,
|
| 134 |
+
target_pred_boxes,
|
| 135 |
+
# query_pred_boxes,
|
| 136 |
+
pred_logits,
|
| 137 |
+
class_embeds,
|
| 138 |
+
vision_outputs.to_tuple(),
|
| 139 |
+
)
|
| 140 |
+
output = tuple(x for x in output if x is not None)
|
| 141 |
+
return output
|
| 142 |
+
|
| 143 |
+
return OwlViTImageGuidedObjectDetectionOutput(
|
| 144 |
+
image_embeds=feature_map,
|
| 145 |
+
# query_image_embeds=query_feature_map,
|
| 146 |
+
target_pred_boxes=target_pred_boxes,
|
| 147 |
+
# query_pred_boxes=query_pred_boxes,
|
| 148 |
+
logits=pred_logits,
|
| 149 |
+
class_embeds=class_embeds,
|
| 150 |
+
text_model_output=None,
|
| 151 |
+
vision_model_output=vision_outputs,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
model.box_guided_detection = partial(box_guided_detection, model)
|
| 156 |
+
model.class_predictor = partial(class_predictor, model)
|
| 157 |
+
model.class_head.classpredictionhead_box_forward = partial(classpredictionhead_box_forward, model.class_head)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
outputs = None
|
| 161 |
+
def prepare_embedds(xmin, ymin, xmax, ymax, image):
|
| 162 |
+
box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
| 163 |
+
return (image, [(box, "manul")])
|
| 164 |
+
|
| 165 |
+
def manul_box_change(xmin, ymin, xmax, ymax, image):
|
| 166 |
+
box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
| 167 |
+
return (image, [(box, "manul")])
|
| 168 |
+
|
| 169 |
+
def threshold_change(xmin, ymin, xmax, ymax, image, threshold, nms):
|
| 170 |
+
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
| 171 |
+
|
| 172 |
+
global outputs
|
| 173 |
+
target_sizes = torch.Tensor([image.size[::-1]])
|
| 174 |
+
|
| 175 |
+
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
|
| 176 |
+
|
| 177 |
+
boxes = results[0]['boxes'].type(torch.int64).tolist()
|
| 178 |
+
scores = results[0]['scores'].tolist()
|
| 179 |
+
labels = list(zip(boxes, scores))
|
| 180 |
+
labels.append((manul_box, "manual"))
|
| 181 |
+
|
| 182 |
+
cnt = len(boxes) - 1
|
| 183 |
+
|
| 184 |
+
return (image, labels), cnt
|
| 185 |
+
|
| 186 |
+
def one_shot_detect(xmin, ymin, xmax, ymax, image, threshold, nms):
|
| 187 |
+
manul_box = (int(xmin), int(ymin), int(xmax), int(ymax))
|
| 188 |
+
|
| 189 |
+
global outputs
|
| 190 |
+
target_sizes = torch.Tensor([image.size[::-1]])
|
| 191 |
+
inputs = processor(images=image.convert("RGB"), return_tensors="pt")
|
| 192 |
+
outputs = model.box_guided_detection(**inputs, query_box=torch.Tensor([manul_box]), target_sizes=target_sizes)
|
| 193 |
+
|
| 194 |
+
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms, target_sizes=target_sizes)
|
| 195 |
+
|
| 196 |
+
boxes = results[0]['boxes'].type(torch.int64).tolist()
|
| 197 |
+
scores = results[0]['scores'].tolist()
|
| 198 |
+
labels = list(zip(boxes, scores))
|
| 199 |
+
labels.append((manul_box, "manual"))
|
| 200 |
+
|
| 201 |
+
cnt = len(boxes) - 1
|
| 202 |
+
|
| 203 |
+
return (image, labels), cnt
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
with gr.Blocks() as demo:
|
| 207 |
+
with gr.Row():
|
| 208 |
+
with gr.Column():
|
| 209 |
+
image = gr.Image(type="pil")
|
| 210 |
+
threshold = gr.Number(0.95, label="threshold", step=0.01)
|
| 211 |
+
nms = gr.Number(0.3, label="nms", step=0.01)
|
| 212 |
+
cnt = gr.Number(0, label="count", interactive=False)
|
| 213 |
+
with gr.Column():
|
| 214 |
+
annotatedimage = gr.AnnotatedImage()
|
| 215 |
+
with gr.Row():
|
| 216 |
+
xmin = gr.Number(8, label="xmin")
|
| 217 |
+
ymin = gr.Number(198, label="ymin")
|
| 218 |
+
xmax = gr.Number(100, label="xmax")
|
| 219 |
+
ymax = gr.Number(428, label="ymax")
|
| 220 |
+
button = gr.Button(variant="primary")
|
| 221 |
+
|
| 222 |
+
xmin.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
|
| 223 |
+
ymin.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
|
| 224 |
+
xmax.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
|
| 225 |
+
ymax.change(manul_box_change, [xmin, ymin, xmax, ymax, image], [annotatedimage])
|
| 226 |
+
threshold.change(threshold_change, [xmin, ymin, xmax, ymax, image, threshold, nms], [annotatedimage, cnt])
|
| 227 |
+
nms.change(threshold_change, [xmin, ymin, xmax, ymax, image, threshold, nms], [annotatedimage, cnt])
|
| 228 |
+
image.upload(prepare_embedds, [xmin, ymin, xmax, ymax, image], [annotatedimage])
|
| 229 |
+
button.click(one_shot_detect, [xmin, ymin, xmax, ymax, image, threshold, nms], [annotatedimage, cnt])
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
demo.launch(server_port=7861)
|