Spaces:
Build error
Build error
| from typing import List | |
| import os | |
| import numpy as np | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
| import supervision as sv | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365") | |
| model = AutoModelForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365").to(device) | |
| BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() | |
| MASK_ANNOTATOR = sv.MaskAnnotator() | |
| LABEL_ANNOTATOR = sv.LabelAnnotator() | |
| TRACKER = sv.ByteTrack() | |
| def annotate_image(input_image: np.ndarray, detections, labels: List[str]) -> np.ndarray: | |
| output_image = MASK_ANNOTATOR.annotate(input_image, detections) | |
| output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections) | |
| output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels) | |
| return output_image | |
| def process_image(input_image: np.ndarray, confidence_threshold: float): | |
| results = query(Image.fromarray(input_image), confidence_threshold) | |
| detections = sv.Detections.from_transformers(results[0]) | |
| detections = TRACKER.update_with_detections(detections) | |
| final_labels = [model.config.id2label[label] for label in detections.class_id.tolist()] | |
| output_image = annotate_image(input_image, detections, final_labels) | |
| return output_image, ", ".join(final_labels) | |
| def query(image: Image.Image, confidence_threshold: float): | |
| inputs = processor(images=image, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| target_sizes = torch.tensor([image.size[::-1]]) | |
| results = processor.post_process_object_detection(outputs=outputs, threshold=confidence_threshold, target_sizes=target_sizes) | |
| return results | |
| def run_demo(): | |
| input_image = gr.Image(label="Input Image", type="numpy") | |
| conf = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, value=0.6, step=0.05) | |
| output_image = gr.Image(label="Output Image", type="numpy") | |
| output_text = gr.Textbox(label="Detected Classes") | |
| def process_and_display(input_image, conf): | |
| output_img, detected_classes = process_image(input_image, conf) | |
| return output_img, detected_classes | |
| gr.Interface( | |
| fn=process_and_display, | |
| inputs=[input_image, conf], | |
| outputs=[output_image, output_text], | |
| title="Real Time Object Detection with RT-DETR", | |
| description="This demo uses RT-DETR for object detection in images. Adjust the confidence threshold to see different results.", | |
| ).launch() | |
| if __name__ == "__main__": | |
| run_demo() | |